量子反常霍尔绝缘体中的诱导超导相关性

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2024-07-10 DOI:10.1038/s41567-024-02574-1
Anjana Uday, Gertjan Lippertz, Kristof Moors, Henry F. Legg, Rikkie Joris, Andrea Bliesener, Lino M. C. Pereira, A. A. Taskin, Yoichi Ando
{"title":"量子反常霍尔绝缘体中的诱导超导相关性","authors":"Anjana Uday, Gertjan Lippertz, Kristof Moors, Henry F. Legg, Rikkie Joris, Andrea Bliesener, Lino M. C. Pereira, A. A. Taskin, Yoichi Ando","doi":"10.1038/s41567-024-02574-1","DOIUrl":null,"url":null,"abstract":"Thin films of ferromagnetic topological insulator materials can host the quantum anomalous Hall effect without the need for an external magnetic field. Inducing Cooper pairing in such a material is a promising way to realize topological superconductivity with the associated chiral Majorana edge states. However, finding evidence of the superconducting proximity effect in such a state has remained a considerable challenge due to inherent experimental difficulties. Here we demonstrate crossed Andreev reflection across a narrow superconducting Nb electrode that is in contact with the chiral edge state of a quantum anomalous Hall insulator. In the crossed Andreev reflection process, an electron injected from one terminal is reflected out as a hole at the other terminal to form a Cooper pair in the superconductor. This is a compelling signature of induced superconducting pair correlation in the chiral edge state. The characteristic length of the crossed Andreev reflection process is found to be much longer than the superconducting coherence length in Nb, which suggests that the crossed Andreev reflection is, indeed, mediated by superconductivity induced on the quantum anomalous Hall insulator surface. Our results will invite future studies of topological superconductivity and Majorana physics, as well as for the search for non-abelian zero modes. The superconducting proximity effect has not been experimentally demonstrated in a quantum anomalous Hall insulator. Now this effect is observed in the chiral edge state of a ferromagnetic topological insulator.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1589-1595"},"PeriodicalIF":17.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02574-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Induced superconducting correlations in a quantum anomalous Hall insulator\",\"authors\":\"Anjana Uday, Gertjan Lippertz, Kristof Moors, Henry F. Legg, Rikkie Joris, Andrea Bliesener, Lino M. C. Pereira, A. A. Taskin, Yoichi Ando\",\"doi\":\"10.1038/s41567-024-02574-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin films of ferromagnetic topological insulator materials can host the quantum anomalous Hall effect without the need for an external magnetic field. Inducing Cooper pairing in such a material is a promising way to realize topological superconductivity with the associated chiral Majorana edge states. However, finding evidence of the superconducting proximity effect in such a state has remained a considerable challenge due to inherent experimental difficulties. Here we demonstrate crossed Andreev reflection across a narrow superconducting Nb electrode that is in contact with the chiral edge state of a quantum anomalous Hall insulator. In the crossed Andreev reflection process, an electron injected from one terminal is reflected out as a hole at the other terminal to form a Cooper pair in the superconductor. This is a compelling signature of induced superconducting pair correlation in the chiral edge state. The characteristic length of the crossed Andreev reflection process is found to be much longer than the superconducting coherence length in Nb, which suggests that the crossed Andreev reflection is, indeed, mediated by superconductivity induced on the quantum anomalous Hall insulator surface. Our results will invite future studies of topological superconductivity and Majorana physics, as well as for the search for non-abelian zero modes. The superconducting proximity effect has not been experimentally demonstrated in a quantum anomalous Hall insulator. Now this effect is observed in the chiral edge state of a ferromagnetic topological insulator.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 10\",\"pages\":\"1589-1595\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41567-024-02574-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02574-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02574-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁磁拓扑绝缘体薄膜材料无需外加磁场即可承载量子反常霍尔效应。在这种材料中诱导库珀配对是实现拓扑超导及相关手性马约拉纳边缘态的一种可行方法。然而,由于固有的实验困难,在这种状态下寻找超导邻近效应的证据仍然是一个相当大的挑战。在这里,我们展示了与量子反常霍尔绝缘体手性边缘态接触的窄超导铌电极之间的交叉安德列夫反射。在交叉安德烈耶夫反射过程中,从一端注入的电子在另一端反射出空穴,在超导体中形成库珀对。这是手性边缘态中诱导超导对相关性的显著特征。交叉安德烈耶夫反射过程的特征长度比铌中的超导相干长度要长得多,这表明交叉安德烈耶夫反射确实是由量子反常霍尔绝缘体表面上的超导诱导介导的。我们的研究结果将有助于今后对拓扑超导和马约拉纳物理学的研究,以及对非阿贝尔零模式的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Induced superconducting correlations in a quantum anomalous Hall insulator
Thin films of ferromagnetic topological insulator materials can host the quantum anomalous Hall effect without the need for an external magnetic field. Inducing Cooper pairing in such a material is a promising way to realize topological superconductivity with the associated chiral Majorana edge states. However, finding evidence of the superconducting proximity effect in such a state has remained a considerable challenge due to inherent experimental difficulties. Here we demonstrate crossed Andreev reflection across a narrow superconducting Nb electrode that is in contact with the chiral edge state of a quantum anomalous Hall insulator. In the crossed Andreev reflection process, an electron injected from one terminal is reflected out as a hole at the other terminal to form a Cooper pair in the superconductor. This is a compelling signature of induced superconducting pair correlation in the chiral edge state. The characteristic length of the crossed Andreev reflection process is found to be much longer than the superconducting coherence length in Nb, which suggests that the crossed Andreev reflection is, indeed, mediated by superconductivity induced on the quantum anomalous Hall insulator surface. Our results will invite future studies of topological superconductivity and Majorana physics, as well as for the search for non-abelian zero modes. The superconducting proximity effect has not been experimentally demonstrated in a quantum anomalous Hall insulator. Now this effect is observed in the chiral edge state of a ferromagnetic topological insulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves Universal dynamics exposed by interaction quenches Nematic fluctuations shape Cooper pairs Islands identified Highly anisotropic superconducting gap near the nematic quantum critical point of FeSe1−xSx
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1