{"title":"高精度测量 5K 至 300K 英钢线的电阻率和温度系数","authors":"B Hamilton, J L Adams, J G Brisson","doi":"10.1088/1757-899x/1301/1/012170","DOIUrl":null,"url":null,"abstract":"The temperature coefficient of resistivity is a critical element of many AC-based hot-wire measurements of thermal properties. At cryogenic temperatures, most metallic materials suitable for wire and film-based forms have either a temperature coefficient or absolute resistivity that is too small to enable practical, accurate measurements. Invar (36Ni 64Fe) controlled thermal expansion alloy has a significant temperature coefficient of resistance while also maintaining significant absolute resistivity at cryogenic temperatures, and so has seen some use in low temperature 3-omega measurements. Prior data on the temperature coefficient of resistivity of Invar is limited and the uncertainty is high. In this work, we present high-accuracy resistance and temperature coefficient data for this material from 5-300 K.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Accuracy Resisitivity and Temperature Coefficient Measurements of Invar Wire from 5K to 300K\",\"authors\":\"B Hamilton, J L Adams, J G Brisson\",\"doi\":\"10.1088/1757-899x/1301/1/012170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature coefficient of resistivity is a critical element of many AC-based hot-wire measurements of thermal properties. At cryogenic temperatures, most metallic materials suitable for wire and film-based forms have either a temperature coefficient or absolute resistivity that is too small to enable practical, accurate measurements. Invar (36Ni 64Fe) controlled thermal expansion alloy has a significant temperature coefficient of resistance while also maintaining significant absolute resistivity at cryogenic temperatures, and so has seen some use in low temperature 3-omega measurements. Prior data on the temperature coefficient of resistivity of Invar is limited and the uncertainty is high. In this work, we present high-accuracy resistance and temperature coefficient data for this material from 5-300 K.\",\"PeriodicalId\":14483,\"journal\":{\"name\":\"IOP Conference Series: Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899x/1301/1/012170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1301/1/012170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
电阻率的温度系数是许多交流热线热特性测量的关键因素。在低温条件下,大多数适用于导线和薄膜形式的金属材料的温度系数或绝对电阻率都太小,无法进行实际的精确测量。英卡尔(36镍 64铁)受控热膨胀合金具有很大的电阻温度系数,同时在低温下也能保持很大的绝对电阻率,因此在低温 3-omega 测量中得到了一定的应用。之前有关因瓦电阻率温度系数的数据很有限,而且不确定性很高。在这项工作中,我们展示了这种材料在 5-300 K 范围内的高精度电阻和温度系数数据。
High Accuracy Resisitivity and Temperature Coefficient Measurements of Invar Wire from 5K to 300K
The temperature coefficient of resistivity is a critical element of many AC-based hot-wire measurements of thermal properties. At cryogenic temperatures, most metallic materials suitable for wire and film-based forms have either a temperature coefficient or absolute resistivity that is too small to enable practical, accurate measurements. Invar (36Ni 64Fe) controlled thermal expansion alloy has a significant temperature coefficient of resistance while also maintaining significant absolute resistivity at cryogenic temperatures, and so has seen some use in low temperature 3-omega measurements. Prior data on the temperature coefficient of resistivity of Invar is limited and the uncertainty is high. In this work, we present high-accuracy resistance and temperature coefficient data for this material from 5-300 K.