利用可分化程序设计细胞簇的形态发生

Ramya Deshpande, Francesco Mottes, Ariana-Dalia Vlad, Michael P. Brenner, Alma dal Co
{"title":"利用可分化程序设计细胞簇的形态发生","authors":"Ramya Deshpande, Francesco Mottes, Ariana-Dalia Vlad, Michael P. Brenner, Alma dal Co","doi":"arxiv-2407.06295","DOIUrl":null,"url":null,"abstract":"Understanding the rules underlying organismal development is a major unsolved\nproblem in biology. Each cell in a developing organism responds to signals in\nits local environment by dividing, excreting, consuming, or reorganizing, yet\nhow these individual actions coordinate over a macroscopic number of cells to\ngrow complex structures with exquisite functionality is unknown. Here we use\nrecent advances in automatic differentiation to discover local interaction\nrules and genetic networks that yield emergent, systems-level characteristics\nin a model of development. We consider a growing tissue with cellular\ninteractions are mediated by morphogen diffusion, differential cell adhesion\nand mechanical stress. Each cell has an internal genetic network that it uses\nto make decisions based on its local environment. We show that one can\nsimultaneously learn parameters governing the cell interactions and the genetic\nnetwork for complex developmental scenarios, including the symmetry breaking of\nan embryo from an initial cell, the creation of emergent chemical\ngradients,homogenization of growth via mechanical stress, programmed growth\ninto a prespecified shape, and the ability to repair from damage. When combined\nwith recent experimental advances measuring spatio-temporal dynamics and gene\nexpression of cells in a growing tissue, the methodology outlined here offers a\npromising path to unravelling the cellular basis of development.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering morphogenesis of cell clusters with differentiable programming\",\"authors\":\"Ramya Deshpande, Francesco Mottes, Ariana-Dalia Vlad, Michael P. Brenner, Alma dal Co\",\"doi\":\"arxiv-2407.06295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the rules underlying organismal development is a major unsolved\\nproblem in biology. Each cell in a developing organism responds to signals in\\nits local environment by dividing, excreting, consuming, or reorganizing, yet\\nhow these individual actions coordinate over a macroscopic number of cells to\\ngrow complex structures with exquisite functionality is unknown. Here we use\\nrecent advances in automatic differentiation to discover local interaction\\nrules and genetic networks that yield emergent, systems-level characteristics\\nin a model of development. We consider a growing tissue with cellular\\ninteractions are mediated by morphogen diffusion, differential cell adhesion\\nand mechanical stress. Each cell has an internal genetic network that it uses\\nto make decisions based on its local environment. We show that one can\\nsimultaneously learn parameters governing the cell interactions and the genetic\\nnetwork for complex developmental scenarios, including the symmetry breaking of\\nan embryo from an initial cell, the creation of emergent chemical\\ngradients,homogenization of growth via mechanical stress, programmed growth\\ninto a prespecified shape, and the ability to repair from damage. When combined\\nwith recent experimental advances measuring spatio-temporal dynamics and gene\\nexpression of cells in a growing tissue, the methodology outlined here offers a\\npromising path to unravelling the cellular basis of development.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解生物体发育的基本规律是生物学中一个尚未解决的重大问题。正在发育的生物体中的每个细胞都会通过分裂、排泄、消耗或重组等方式对其局部环境中的信号做出反应,但这些个体行为如何在数量庞大的细胞中相互协调,从而生长出具有精巧功能的复杂结构,目前还不得而知。在这里,我们利用自动分化技术的最新进展,在一个发育模型中发现了产生突发性系统级特征的局部相互作用规则和遗传网络。我们考虑了一个生长中的组织,其细胞相互作用由形态发生扩散、不同细胞粘附和机械应力介导。每个细胞都有一个内部遗传网络,用于根据局部环境做出决策。我们的研究表明,在复杂的发育过程中,人们可以同时学习细胞相互作用和遗传网络的参数,包括从初始细胞打破胚胎的对称性、创造新出现的化学梯度、通过机械应力使生长均匀化、按程序生长成预先指定的形状,以及从损伤中修复的能力。结合最近测量生长组织中细胞时空动态和基因表达的实验进展,本文概述的方法为揭示发育的细胞基础提供了一条光明大道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering morphogenesis of cell clusters with differentiable programming
Understanding the rules underlying organismal development is a major unsolved problem in biology. Each cell in a developing organism responds to signals in its local environment by dividing, excreting, consuming, or reorganizing, yet how these individual actions coordinate over a macroscopic number of cells to grow complex structures with exquisite functionality is unknown. Here we use recent advances in automatic differentiation to discover local interaction rules and genetic networks that yield emergent, systems-level characteristics in a model of development. We consider a growing tissue with cellular interactions are mediated by morphogen diffusion, differential cell adhesion and mechanical stress. Each cell has an internal genetic network that it uses to make decisions based on its local environment. We show that one can simultaneously learn parameters governing the cell interactions and the genetic network for complex developmental scenarios, including the symmetry breaking of an embryo from an initial cell, the creation of emergent chemical gradients,homogenization of growth via mechanical stress, programmed growth into a prespecified shape, and the ability to repair from damage. When combined with recent experimental advances measuring spatio-temporal dynamics and gene expression of cells in a growing tissue, the methodology outlined here offers a promising path to unravelling the cellular basis of development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1