Jorunn Børve, Katharina Pampus, Tuuli Haikonen, Andrea Podavkova, Gaute Myren, Roland W. S. Weber
{"title":"北欧各地苹果树上 Neonectria ditissima 寄生虫包囊的季节性发育差异","authors":"Jorunn Børve, Katharina Pampus, Tuuli Haikonen, Andrea Podavkova, Gaute Myren, Roland W. S. Weber","doi":"10.1007/s10658-024-02905-1","DOIUrl":null,"url":null,"abstract":"<p>Ascospores discharged at rainfall and dispersed by wind can provide long-distance spread of the European canker fungus, <i>Neonectria ditissima</i>. Ascospores are produced by perithecia which are the sexual reproductive stage. Diffuse knowledge exists on the seasonal pattern of perithecium formation under different climatic conditions. Therefore, the development of perithecia was observed for several successive seasons at five sites in three Northern European countries. In Norway and Finland, ripe perithecia were commonly recorded throughout the year, and on individual cankers continuously for up to 28 months. In contrast, asexual reproductive structures (sporodochia) were confined to the growing season in both countries. In Northern Germany an average of 51% of cankers developed ripe perithecia by late winter, and perithecial senescence ensued in late spring. On average, ripe perithecia were present on cankers for 22 weeks. In contrast, sporodochia were observed all year round. The timing of perithecium maturation correlated with the number of days with > 2 mm rainfall in July–September. The presence of mature perithecia and sporodochia for different lengths of time in different countries has implications for regional disease management strategies.</p>","PeriodicalId":12052,"journal":{"name":"European Journal of Plant Pathology","volume":"72 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differences in the seasonal development of perithecia by Neonectria ditissima on apple trees across Northern Europe\",\"authors\":\"Jorunn Børve, Katharina Pampus, Tuuli Haikonen, Andrea Podavkova, Gaute Myren, Roland W. S. Weber\",\"doi\":\"10.1007/s10658-024-02905-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ascospores discharged at rainfall and dispersed by wind can provide long-distance spread of the European canker fungus, <i>Neonectria ditissima</i>. Ascospores are produced by perithecia which are the sexual reproductive stage. Diffuse knowledge exists on the seasonal pattern of perithecium formation under different climatic conditions. Therefore, the development of perithecia was observed for several successive seasons at five sites in three Northern European countries. In Norway and Finland, ripe perithecia were commonly recorded throughout the year, and on individual cankers continuously for up to 28 months. In contrast, asexual reproductive structures (sporodochia) were confined to the growing season in both countries. In Northern Germany an average of 51% of cankers developed ripe perithecia by late winter, and perithecial senescence ensued in late spring. On average, ripe perithecia were present on cankers for 22 weeks. In contrast, sporodochia were observed all year round. The timing of perithecium maturation correlated with the number of days with > 2 mm rainfall in July–September. The presence of mature perithecia and sporodochia for different lengths of time in different countries has implications for regional disease management strategies.</p>\",\"PeriodicalId\":12052,\"journal\":{\"name\":\"European Journal of Plant Pathology\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10658-024-02905-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10658-024-02905-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Differences in the seasonal development of perithecia by Neonectria ditissima on apple trees across Northern Europe
Ascospores discharged at rainfall and dispersed by wind can provide long-distance spread of the European canker fungus, Neonectria ditissima. Ascospores are produced by perithecia which are the sexual reproductive stage. Diffuse knowledge exists on the seasonal pattern of perithecium formation under different climatic conditions. Therefore, the development of perithecia was observed for several successive seasons at five sites in three Northern European countries. In Norway and Finland, ripe perithecia were commonly recorded throughout the year, and on individual cankers continuously for up to 28 months. In contrast, asexual reproductive structures (sporodochia) were confined to the growing season in both countries. In Northern Germany an average of 51% of cankers developed ripe perithecia by late winter, and perithecial senescence ensued in late spring. On average, ripe perithecia were present on cankers for 22 weeks. In contrast, sporodochia were observed all year round. The timing of perithecium maturation correlated with the number of days with > 2 mm rainfall in July–September. The presence of mature perithecia and sporodochia for different lengths of time in different countries has implications for regional disease management strategies.
期刊介绍:
The European Journal of Plant Pathology is an international journal publishing original articles in English dealing with fundamental and applied aspects of plant pathology; considering disease in agricultural and horticultural crops, forestry, and in natural plant populations. The types of articles published are :Original Research at the molecular, physiological, whole-plant and population levels; Mini-reviews on topics which are timely and of global rather than national or regional significance; Short Communications for important research findings that can be presented in an abbreviated format; and Letters-to-the-Editor, where these raise issues related to articles previously published in the journal. Submissions relating to disease vector biology and integrated crop protection are welcome. However, routine screenings of plant protection products, varietal trials for disease resistance, and biological control agents are not published in the journal unless framed in the context of strategic approaches to disease management.