{"title":"本地和远洋海温升高对北太平洋西部夏季环流变化的影响","authors":"Chao-An Chen, Huang-Hsiung Hsu, Hsin-Chien Liang, Yu-Luen Chen, Ping-Gin Chiu, Chia-Ying Tu","doi":"10.1175/jcli-d-23-0403.1","DOIUrl":null,"url":null,"abstract":"Abstract This study explores how future SST warming in remote ocean basins may affect the western North Pacific (WNP) wet season climate by applying a high-resolution atmospheric general circulation model to conduct a series of numerical experiments. A marked precipitation and tropical cyclone (TC) activity reduction, as well as enhanced anticyclonic circulation, in the WNP is projected in AMIP experiments forced by SST change in a future warming scenario. The sensitivity experiments reveal that various SST warming phenomena (e.g., in the global SST warming pattern, the tropical ocean belt, the Indian Ocean, tropical Atlantic, the subtropical northeast Pacific) and the increase of greenhouse gas concentration could weaken the precipitation, TC activity, and circulation. By contrast, the SST warming in the WNP and eastern equatorial Pacific have opposite and mixed effects, respectively, and tend to weakly offset the dominant influences of remote ocean warming. These results indicate that the WNP, being the epicenter of the global teleconnection of divergent and rotational flow, is susceptible to the influence of the SST warming in remote ocean basins. The remote forcing as projected in future scenarios would overwhelm the enhancing effect of local SST warming and weaken the circulation, convection, and TC activity in the WNP. These findings further the understanding of how the decreased precipitation and enhanced subtropical high in the WNP may be easily triggered by remote SST warming as revealed in the AMIP-type simulations. How this effect would be affected by air-sea coupling needs further investigation.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"26 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific\",\"authors\":\"Chao-An Chen, Huang-Hsiung Hsu, Hsin-Chien Liang, Yu-Luen Chen, Ping-Gin Chiu, Chia-Ying Tu\",\"doi\":\"10.1175/jcli-d-23-0403.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study explores how future SST warming in remote ocean basins may affect the western North Pacific (WNP) wet season climate by applying a high-resolution atmospheric general circulation model to conduct a series of numerical experiments. A marked precipitation and tropical cyclone (TC) activity reduction, as well as enhanced anticyclonic circulation, in the WNP is projected in AMIP experiments forced by SST change in a future warming scenario. The sensitivity experiments reveal that various SST warming phenomena (e.g., in the global SST warming pattern, the tropical ocean belt, the Indian Ocean, tropical Atlantic, the subtropical northeast Pacific) and the increase of greenhouse gas concentration could weaken the precipitation, TC activity, and circulation. By contrast, the SST warming in the WNP and eastern equatorial Pacific have opposite and mixed effects, respectively, and tend to weakly offset the dominant influences of remote ocean warming. These results indicate that the WNP, being the epicenter of the global teleconnection of divergent and rotational flow, is susceptible to the influence of the SST warming in remote ocean basins. The remote forcing as projected in future scenarios would overwhelm the enhancing effect of local SST warming and weaken the circulation, convection, and TC activity in the WNP. These findings further the understanding of how the decreased precipitation and enhanced subtropical high in the WNP may be easily triggered by remote SST warming as revealed in the AMIP-type simulations. How this effect would be affected by air-sea coupling needs further investigation.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0403.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0403.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific
Abstract This study explores how future SST warming in remote ocean basins may affect the western North Pacific (WNP) wet season climate by applying a high-resolution atmospheric general circulation model to conduct a series of numerical experiments. A marked precipitation and tropical cyclone (TC) activity reduction, as well as enhanced anticyclonic circulation, in the WNP is projected in AMIP experiments forced by SST change in a future warming scenario. The sensitivity experiments reveal that various SST warming phenomena (e.g., in the global SST warming pattern, the tropical ocean belt, the Indian Ocean, tropical Atlantic, the subtropical northeast Pacific) and the increase of greenhouse gas concentration could weaken the precipitation, TC activity, and circulation. By contrast, the SST warming in the WNP and eastern equatorial Pacific have opposite and mixed effects, respectively, and tend to weakly offset the dominant influences of remote ocean warming. These results indicate that the WNP, being the epicenter of the global teleconnection of divergent and rotational flow, is susceptible to the influence of the SST warming in remote ocean basins. The remote forcing as projected in future scenarios would overwhelm the enhancing effect of local SST warming and weaken the circulation, convection, and TC activity in the WNP. These findings further the understanding of how the decreased precipitation and enhanced subtropical high in the WNP may be easily triggered by remote SST warming as revealed in the AMIP-type simulations. How this effect would be affected by air-sea coupling needs further investigation.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.