Sebastian Kharileh, Kariman Shama, Mariah Turner, Brittany Taylor
{"title":"聚合物微球生物因子释放的时间控制","authors":"Sebastian Kharileh, Kariman Shama, Mariah Turner, Brittany Taylor","doi":"10.1557/s43579-024-00600-0","DOIUrl":null,"url":null,"abstract":"<p>To improve the integrity of tendons, mitigating scar tissue formation by targeting the cellular activities that contribute to fibrosis during healing is crucial. Microparticles are a promising solution by delivering biofactors directly to the injury site. We synthesized poly (lactic-co-glycolic acid) microspheres with Labrafil oil to control the release profile. The release of biofactors was initially delayed, followed by an increased release rate. Thus, by increasing the hydrophobicity of the polymer, Labrafil oil delays microsphere degradation and ultimately controls the release of an encapsulated factor. Further, the system can be utilized for multi-factorial release to temporally complement tendon healing.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"16 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporally controlling the release of biofactors from polymeric microspheres\",\"authors\":\"Sebastian Kharileh, Kariman Shama, Mariah Turner, Brittany Taylor\",\"doi\":\"10.1557/s43579-024-00600-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the integrity of tendons, mitigating scar tissue formation by targeting the cellular activities that contribute to fibrosis during healing is crucial. Microparticles are a promising solution by delivering biofactors directly to the injury site. We synthesized poly (lactic-co-glycolic acid) microspheres with Labrafil oil to control the release profile. The release of biofactors was initially delayed, followed by an increased release rate. Thus, by increasing the hydrophobicity of the polymer, Labrafil oil delays microsphere degradation and ultimately controls the release of an encapsulated factor. Further, the system can be utilized for multi-factorial release to temporally complement tendon healing.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00600-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00600-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Temporally controlling the release of biofactors from polymeric microspheres
To improve the integrity of tendons, mitigating scar tissue formation by targeting the cellular activities that contribute to fibrosis during healing is crucial. Microparticles are a promising solution by delivering biofactors directly to the injury site. We synthesized poly (lactic-co-glycolic acid) microspheres with Labrafil oil to control the release profile. The release of biofactors was initially delayed, followed by an increased release rate. Thus, by increasing the hydrophobicity of the polymer, Labrafil oil delays microsphere degradation and ultimately controls the release of an encapsulated factor. Further, the system can be utilized for multi-factorial release to temporally complement tendon healing.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.