Blessing I. Hammer, Ranjitha K. Hariharalakshmanan, S. M. Sayem, Shanzida Haque, Tansel Karabacak
{"title":"通过热水处理合成的金属氧化物纳米结构的耐久性","authors":"Blessing I. Hammer, Ranjitha K. Hariharalakshmanan, S. M. Sayem, Shanzida Haque, Tansel Karabacak","doi":"10.1557/s43579-024-00604-w","DOIUrl":null,"url":null,"abstract":"<p>Metal oxide nanostructures (MONSTRs) have become popular in various fields. This study investigates the durability of MONSTRs synthesized through hot water treatment (HWT) using copper, aluminum, and zinc as the source metals of choice. The physical durability tests include pressure, scratch, and scotch tape adhesion tests, and chemical durability tests such as corrosion resistance tests, heat resistance, and solar exposure tests. Results showed that MONSTRs synthesized from HWT are highly durable under the tested conditions except for NaOH and HCl immersion tests for copper oxide and zinc oxide. The study concluded that HWT is a sustainable synthesis method for MONSTRs.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"87 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durability of metal oxide nanostructures synthesized by hot water treatment\",\"authors\":\"Blessing I. Hammer, Ranjitha K. Hariharalakshmanan, S. M. Sayem, Shanzida Haque, Tansel Karabacak\",\"doi\":\"10.1557/s43579-024-00604-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal oxide nanostructures (MONSTRs) have become popular in various fields. This study investigates the durability of MONSTRs synthesized through hot water treatment (HWT) using copper, aluminum, and zinc as the source metals of choice. The physical durability tests include pressure, scratch, and scotch tape adhesion tests, and chemical durability tests such as corrosion resistance tests, heat resistance, and solar exposure tests. Results showed that MONSTRs synthesized from HWT are highly durable under the tested conditions except for NaOH and HCl immersion tests for copper oxide and zinc oxide. The study concluded that HWT is a sustainable synthesis method for MONSTRs.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00604-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00604-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Durability of metal oxide nanostructures synthesized by hot water treatment
Metal oxide nanostructures (MONSTRs) have become popular in various fields. This study investigates the durability of MONSTRs synthesized through hot water treatment (HWT) using copper, aluminum, and zinc as the source metals of choice. The physical durability tests include pressure, scratch, and scotch tape adhesion tests, and chemical durability tests such as corrosion resistance tests, heat resistance, and solar exposure tests. Results showed that MONSTRs synthesized from HWT are highly durable under the tested conditions except for NaOH and HCl immersion tests for copper oxide and zinc oxide. The study concluded that HWT is a sustainable synthesis method for MONSTRs.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.