{"title":"边界上有德里赫特区域的传输密度 BV 估计值","authors":"Samer Dweik","doi":"10.1007/s00526-024-02746-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove BV regularity on the transport density in the mass transport problem to the boundary in two dimensions under certain conditions on the domain, the boundary cost and the mass distribution. Moreover, we show by a counter-example that the smoothness of the mass distribution, the boundary and the boundary cost does not imply that the transport density is <span>\\(W^{1,p}\\)</span>, for some <span>\\(p>1\\)</span>.\n</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"46 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BV estimates on the transport density with Dirichlet region on the boundary\",\"authors\":\"Samer Dweik\",\"doi\":\"10.1007/s00526-024-02746-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove BV regularity on the transport density in the mass transport problem to the boundary in two dimensions under certain conditions on the domain, the boundary cost and the mass distribution. Moreover, we show by a counter-example that the smoothness of the mass distribution, the boundary and the boundary cost does not imply that the transport density is <span>\\\\(W^{1,p}\\\\)</span>, for some <span>\\\\(p>1\\\\)</span>.\\n</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02746-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02746-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
BV estimates on the transport density with Dirichlet region on the boundary
In this paper, we prove BV regularity on the transport density in the mass transport problem to the boundary in two dimensions under certain conditions on the domain, the boundary cost and the mass distribution. Moreover, we show by a counter-example that the smoothness of the mass distribution, the boundary and the boundary cost does not imply that the transport density is \(W^{1,p}\), for some \(p>1\).
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.