自适应仓本模型的连续极限

Rok Cestnik, Erik A. Martens
{"title":"自适应仓本模型的连续极限","authors":"Rok Cestnik, Erik A. Martens","doi":"arxiv-2407.03433","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of the adaptive Kuramoto model in the continuum\nlimit with slow adaptation. This model is distinguished by dense\nmultistability, where multiple states coexist for the same system parameters.\nThe underlying cause of this multistability is that some oscillators can lock\nat different phases or switch between locking and drifting depending on their\ninitial conditions. We identify new states, such as two-cluster states. To\nsimplify the analysis we introduce an approximate reduction of the model via\nrow-averaging of the coupling matrix. We derive a self-consistency equation for\nthe reduced model and present a stability diagram illustrating the effects of\npositive and negative adaptation. Our theoretical findings are validated\nthrough numerical simulations of a large finite system. Comparisons to previous\nwork highlight the significant influence of adaptation on synchronization\nbehavior.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuum limit of the adaptive Kuramoto model\",\"authors\":\"Rok Cestnik, Erik A. Martens\",\"doi\":\"arxiv-2407.03433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the dynamics of the adaptive Kuramoto model in the continuum\\nlimit with slow adaptation. This model is distinguished by dense\\nmultistability, where multiple states coexist for the same system parameters.\\nThe underlying cause of this multistability is that some oscillators can lock\\nat different phases or switch between locking and drifting depending on their\\ninitial conditions. We identify new states, such as two-cluster states. To\\nsimplify the analysis we introduce an approximate reduction of the model via\\nrow-averaging of the coupling matrix. We derive a self-consistency equation for\\nthe reduced model and present a stability diagram illustrating the effects of\\npositive and negative adaptation. Our theoretical findings are validated\\nthrough numerical simulations of a large finite system. Comparisons to previous\\nwork highlight the significant influence of adaptation on synchronization\\nbehavior.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了连续极限中具有慢适应性的自适应仓本模型的动力学。这种多态性的根本原因在于某些振荡器可以锁定在不同的阶段,或者根据初始条件在锁定和漂移之间切换。我们发现了新的状态,如双簇状态。为了简化分析,我们引入了对模型的近似还原,即耦合矩阵的平均化。我们推导出了简化模型的自洽方程,并给出了一个稳定图,说明了正适应和负适应的影响。我们的理论发现通过一个大型有限系统的数值模拟得到了验证。与前人的研究成果相比,我们发现适应性对同步行为有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuum limit of the adaptive Kuramoto model
We investigate the dynamics of the adaptive Kuramoto model in the continuum limit with slow adaptation. This model is distinguished by dense multistability, where multiple states coexist for the same system parameters. The underlying cause of this multistability is that some oscillators can lock at different phases or switch between locking and drifting depending on their initial conditions. We identify new states, such as two-cluster states. To simplify the analysis we introduce an approximate reduction of the model via row-averaging of the coupling matrix. We derive a self-consistency equation for the reduced model and present a stability diagram illustrating the effects of positive and negative adaptation. Our theoretical findings are validated through numerical simulations of a large finite system. Comparisons to previous work highlight the significant influence of adaptation on synchronization behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1