Bhagyashri U. Tale, Kailash R. Nemade, Pradip V. Tekade
{"title":"用于高效超级电容器应用的新型石墨烯基 MnO2/ 聚苯胺纳米杂化材料","authors":"Bhagyashri U. Tale, Kailash R. Nemade, Pradip V. Tekade","doi":"10.1007/s10934-024-01656-y","DOIUrl":null,"url":null,"abstract":"<div><p>To cater the ever growing energy demand and durability for modern applications like portable electronic gadgets, hybrid electric vehicles, etc., enormous research has been done to develop high capacity electrochemical energy storage devices. Among different allotropes of carbon, graphene, is emerged as an excellent candidate for energy conversion and storage applications because of its unique properties, including high specific surface area (2630 m<sup>2</sup>/g), good chemical stability and excellent electrical conductivity. To obtain high specific capacitance as well as high rate capability, the use of MnO<sub>2</sub> based composite materials is predicted as potential candidate. Strategies to modify supercapacitor performance of MnO<sub>2</sub> based composites are reported by various research groups. Polyaniline is one of the most studied conducting polymer due to good conductivity, environmental stability, low weight, easy synthesis on large scale and economic importance for industrial applications. In commercial supercapacitors, activated carbon is commonly used as electrode materials. Low energy density of carbon materials cannot be efficient for their effective use in energy storage applications. Thus, preparation of supercapacitors by using hybrid material with incorporation of metal oxides and conducting polymers in graphene can provide exceptional energy as well as power density. Nanocomposite materials have attracted much attention due to the synergetic effects between the components which shows better electrical properties. Further, the improvement in the electrical properties in hybrid materials is attributed to the direct interfacial interaction. In this study, specific capacitance of Polyaniline/MnO<sub>2</sub>/Graphene/Graphene oxide composite material was found to be 1882.32 (Fg<sup>−1</sup>) with symmetric galvanostatic charge/discharge curves and 97.61% capacitance retention after 6063 cycles in cycle performance.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 6","pages":"2053 - 2065"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel graphene based MnO2/polyaniline nanohybrid material for efficient supercapacitor application\",\"authors\":\"Bhagyashri U. Tale, Kailash R. Nemade, Pradip V. Tekade\",\"doi\":\"10.1007/s10934-024-01656-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To cater the ever growing energy demand and durability for modern applications like portable electronic gadgets, hybrid electric vehicles, etc., enormous research has been done to develop high capacity electrochemical energy storage devices. Among different allotropes of carbon, graphene, is emerged as an excellent candidate for energy conversion and storage applications because of its unique properties, including high specific surface area (2630 m<sup>2</sup>/g), good chemical stability and excellent electrical conductivity. To obtain high specific capacitance as well as high rate capability, the use of MnO<sub>2</sub> based composite materials is predicted as potential candidate. Strategies to modify supercapacitor performance of MnO<sub>2</sub> based composites are reported by various research groups. Polyaniline is one of the most studied conducting polymer due to good conductivity, environmental stability, low weight, easy synthesis on large scale and economic importance for industrial applications. In commercial supercapacitors, activated carbon is commonly used as electrode materials. Low energy density of carbon materials cannot be efficient for their effective use in energy storage applications. Thus, preparation of supercapacitors by using hybrid material with incorporation of metal oxides and conducting polymers in graphene can provide exceptional energy as well as power density. Nanocomposite materials have attracted much attention due to the synergetic effects between the components which shows better electrical properties. Further, the improvement in the electrical properties in hybrid materials is attributed to the direct interfacial interaction. In this study, specific capacitance of Polyaniline/MnO<sub>2</sub>/Graphene/Graphene oxide composite material was found to be 1882.32 (Fg<sup>−1</sup>) with symmetric galvanostatic charge/discharge curves and 97.61% capacitance retention after 6063 cycles in cycle performance.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 6\",\"pages\":\"2053 - 2065\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01656-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01656-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Novel graphene based MnO2/polyaniline nanohybrid material for efficient supercapacitor application
To cater the ever growing energy demand and durability for modern applications like portable electronic gadgets, hybrid electric vehicles, etc., enormous research has been done to develop high capacity electrochemical energy storage devices. Among different allotropes of carbon, graphene, is emerged as an excellent candidate for energy conversion and storage applications because of its unique properties, including high specific surface area (2630 m2/g), good chemical stability and excellent electrical conductivity. To obtain high specific capacitance as well as high rate capability, the use of MnO2 based composite materials is predicted as potential candidate. Strategies to modify supercapacitor performance of MnO2 based composites are reported by various research groups. Polyaniline is one of the most studied conducting polymer due to good conductivity, environmental stability, low weight, easy synthesis on large scale and economic importance for industrial applications. In commercial supercapacitors, activated carbon is commonly used as electrode materials. Low energy density of carbon materials cannot be efficient for their effective use in energy storage applications. Thus, preparation of supercapacitors by using hybrid material with incorporation of metal oxides and conducting polymers in graphene can provide exceptional energy as well as power density. Nanocomposite materials have attracted much attention due to the synergetic effects between the components which shows better electrical properties. Further, the improvement in the electrical properties in hybrid materials is attributed to the direct interfacial interaction. In this study, specific capacitance of Polyaniline/MnO2/Graphene/Graphene oxide composite material was found to be 1882.32 (Fg−1) with symmetric galvanostatic charge/discharge curves and 97.61% capacitance retention after 6063 cycles in cycle performance.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.