Hannah Häring , Dennis Gramlich , Christian Ebenbauer , Carsten W. Scherer
{"title":"利用半有限松弛为单车模型生成轨迹","authors":"Hannah Häring , Dennis Gramlich , Christian Ebenbauer , Carsten W. Scherer","doi":"10.1016/j.ejcon.2024.101063","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a convex relaxation for the minimum energy control problem of the well-known unicycle model in the form of a semidefinite program. Through polynomialization techniques, the infinite-dimensional optimal control problem is first reformulated as a non-convex, infinite-dimensional quadratic program which can be viewed as a trajectory generation problem. This problem is then discretized to arrive at a finite-dimensional, albeit, non-convex quadratically constrained quadratic program. By applying the moment relaxation method to this quadratic program, we obtain a hierarchy of semidefinite relaxations. We construct an approximate solution for the infinite-dimensional trajectory generation problem by solving the first- or second-order moment relaxation. A comprehensive simulation study provided in this paper suggests that the second-order moment relaxation is lossless.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101063"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory generation for the unicycle model using semidefinite relaxations\",\"authors\":\"Hannah Häring , Dennis Gramlich , Christian Ebenbauer , Carsten W. Scherer\",\"doi\":\"10.1016/j.ejcon.2024.101063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a convex relaxation for the minimum energy control problem of the well-known unicycle model in the form of a semidefinite program. Through polynomialization techniques, the infinite-dimensional optimal control problem is first reformulated as a non-convex, infinite-dimensional quadratic program which can be viewed as a trajectory generation problem. This problem is then discretized to arrive at a finite-dimensional, albeit, non-convex quadratically constrained quadratic program. By applying the moment relaxation method to this quadratic program, we obtain a hierarchy of semidefinite relaxations. We construct an approximate solution for the infinite-dimensional trajectory generation problem by solving the first- or second-order moment relaxation. A comprehensive simulation study provided in this paper suggests that the second-order moment relaxation is lossless.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101063\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001237\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001237","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Trajectory generation for the unicycle model using semidefinite relaxations
We develop a convex relaxation for the minimum energy control problem of the well-known unicycle model in the form of a semidefinite program. Through polynomialization techniques, the infinite-dimensional optimal control problem is first reformulated as a non-convex, infinite-dimensional quadratic program which can be viewed as a trajectory generation problem. This problem is then discretized to arrive at a finite-dimensional, albeit, non-convex quadratically constrained quadratic program. By applying the moment relaxation method to this quadratic program, we obtain a hierarchy of semidefinite relaxations. We construct an approximate solution for the infinite-dimensional trajectory generation problem by solving the first- or second-order moment relaxation. A comprehensive simulation study provided in this paper suggests that the second-order moment relaxation is lossless.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.