嵌入在还原氧化石墨烯上的非晶碳插层 MoS2 纳米片可实现出色的高倍率和超长循环钠存储

IF 10.7 Q1 CHEMISTRY, PHYSICAL EcoMat Pub Date : 2024-07-08 DOI:10.1002/eom2.12479
Jun Xu, Junbao Jiang, Shoufu Cao, Suwan Li, Yuanming Ma, Junwei Chen, Yan Zhang, Xiaoqing Lu
{"title":"嵌入在还原氧化石墨烯上的非晶碳插层 MoS2 纳米片可实现出色的高倍率和超长循环钠存储","authors":"Jun Xu,&nbsp;Junbao Jiang,&nbsp;Shoufu Cao,&nbsp;Suwan Li,&nbsp;Yuanming Ma,&nbsp;Junwei Chen,&nbsp;Yan Zhang,&nbsp;Xiaoqing Lu","doi":"10.1002/eom2.12479","DOIUrl":null,"url":null,"abstract":"<p>MoS<sub>2</sub> as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium-ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na<sup>+</sup> diffusion barriers. Herein, intercalation of N-doped amorphous carbon (NAC) into each interlayer of the tiny MoS<sub>2</sub> nanosheets embedded on rGO conductive network is achieved, resulting in formation of rGO@MoS<sub>2</sub>/NAC hierarchy with interoverlapped MoS<sub>2</sub>/NAC superlattices for high-performance SIBs. Attributed to intercalation of NAC, the resulting MoS<sub>2</sub>/NAC superlattices with wide MoS<sub>2</sub> interlayer of 1.02 nm facilitates rapid Na<sup>+</sup> insertion/extraction and accelerates reaction kinetics. Theoretical calculations uncover that the MoS<sub>2</sub>/NAC superlattices are beneficial for enhanced electron transport, decreased Na<sup>+</sup> diffusion barrier and improved Na<sup>+</sup> adsorption energy. The rGO@MoS<sub>2</sub>/NAC anode presents significantly improved high-rate capabilities of 228, 207, and 166 mAh g<sup>−1</sup> at 20, 30, and 50 A g<sup>−1</sup>, respectively, compared with two control samples of pristine MoS<sub>2</sub> and MoS<sub>2</sub>/NAC counterparts. Excellent long-term cyclability over 10 000 cycles with extremely low capacity decay is demonstrated at high current densities of 20 and 50 A g<sup>−1</sup>. Sodium-ion full cells based on the rGO@MoS<sub>2</sub>/NAC anode are also demonstrated, yielding decent cycling stability of 200 cycles at 5C. Our work provides a novel interlayer strategy to regulate electron/Na<sup>+</sup> transport for fast-charging SIBs.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12479","citationCount":"0","resultStr":"{\"title\":\"Amorphous carbon intercalated MoS2 nanosheets embedded on reduced graphene oxide for excellent high-rate and ultralong cycling sodium storage\",\"authors\":\"Jun Xu,&nbsp;Junbao Jiang,&nbsp;Shoufu Cao,&nbsp;Suwan Li,&nbsp;Yuanming Ma,&nbsp;Junwei Chen,&nbsp;Yan Zhang,&nbsp;Xiaoqing Lu\",\"doi\":\"10.1002/eom2.12479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MoS<sub>2</sub> as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium-ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na<sup>+</sup> diffusion barriers. Herein, intercalation of N-doped amorphous carbon (NAC) into each interlayer of the tiny MoS<sub>2</sub> nanosheets embedded on rGO conductive network is achieved, resulting in formation of rGO@MoS<sub>2</sub>/NAC hierarchy with interoverlapped MoS<sub>2</sub>/NAC superlattices for high-performance SIBs. Attributed to intercalation of NAC, the resulting MoS<sub>2</sub>/NAC superlattices with wide MoS<sub>2</sub> interlayer of 1.02 nm facilitates rapid Na<sup>+</sup> insertion/extraction and accelerates reaction kinetics. Theoretical calculations uncover that the MoS<sub>2</sub>/NAC superlattices are beneficial for enhanced electron transport, decreased Na<sup>+</sup> diffusion barrier and improved Na<sup>+</sup> adsorption energy. The rGO@MoS<sub>2</sub>/NAC anode presents significantly improved high-rate capabilities of 228, 207, and 166 mAh g<sup>−1</sup> at 20, 30, and 50 A g<sup>−1</sup>, respectively, compared with two control samples of pristine MoS<sub>2</sub> and MoS<sub>2</sub>/NAC counterparts. Excellent long-term cyclability over 10 000 cycles with extremely low capacity decay is demonstrated at high current densities of 20 and 50 A g<sup>−1</sup>. Sodium-ion full cells based on the rGO@MoS<sub>2</sub>/NAC anode are also demonstrated, yielding decent cycling stability of 200 cycles at 5C. Our work provides a novel interlayer strategy to regulate electron/Na<sup>+</sup> transport for fast-charging SIBs.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12479\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

MoS2 作为一种典型的层状过渡金属二钴化物(LTMD),在钠离子电池(SIB)中作为钠宿主材料的应用引起了广泛关注。然而,它的半导体性能较低,Na+扩散障碍较高。在本文中,将掺杂 N 的无定形碳 (NAC) 插层到嵌入在 rGO 导电网络上的微小 MoS2 纳米片的每个层间,从而形成了具有 MoS2/NAC 超晶格交叠的 rGO@MoS2/NAC 层次结构,用于制造高性能 SIB。由于 NAC 的插层作用,所形成的 MoS2/NAC 超晶格具有 1.02 nm 宽的 MoS2 夹层,有利于 Na+ 的快速插入/萃取,并加快了反应动力学。理论计算发现,MoS2/NAC 超晶格有利于增强电子传输、降低 Na+ 扩散阻力和提高 Na+ 吸附能。与两个对照样品(原始 MoS2 和 MoS2/NAC 对应样品)相比,rGO@MoS2/NAC 阳极在 20、30 和 50 A g-1 电流条件下的高速率能力分别达到 228、207 和 166 mAh g-1。在 20 A g-1 和 50 A g-1 的高电流密度下,该电池具有超过 10,000 次循环的出色长期循环能力,且容量衰减极低。此外,还展示了基于 rGO@MoS2/NAC 阳极的钠离子全电池,在 5C 温度下可稳定循环 200 次。我们的工作提供了一种新颖的层间策略,可调节快速充电 SIB 的电子/Na+ 传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amorphous carbon intercalated MoS2 nanosheets embedded on reduced graphene oxide for excellent high-rate and ultralong cycling sodium storage

MoS2 as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium-ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na+ diffusion barriers. Herein, intercalation of N-doped amorphous carbon (NAC) into each interlayer of the tiny MoS2 nanosheets embedded on rGO conductive network is achieved, resulting in formation of rGO@MoS2/NAC hierarchy with interoverlapped MoS2/NAC superlattices for high-performance SIBs. Attributed to intercalation of NAC, the resulting MoS2/NAC superlattices with wide MoS2 interlayer of 1.02 nm facilitates rapid Na+ insertion/extraction and accelerates reaction kinetics. Theoretical calculations uncover that the MoS2/NAC superlattices are beneficial for enhanced electron transport, decreased Na+ diffusion barrier and improved Na+ adsorption energy. The rGO@MoS2/NAC anode presents significantly improved high-rate capabilities of 228, 207, and 166 mAh g−1 at 20, 30, and 50 A g−1, respectively, compared with two control samples of pristine MoS2 and MoS2/NAC counterparts. Excellent long-term cyclability over 10 000 cycles with extremely low capacity decay is demonstrated at high current densities of 20 and 50 A g−1. Sodium-ion full cells based on the rGO@MoS2/NAC anode are also demonstrated, yielding decent cycling stability of 200 cycles at 5C. Our work provides a novel interlayer strategy to regulate electron/Na+ transport for fast-charging SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Cover Image Issue Information PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1