{"title":"滞后感知半同步联合学习","authors":"Miri Yu, Jiheon Choi, Jaehyun Lee, Sangyoon Oh","doi":"10.1016/j.jpdc.2024.104950","DOIUrl":null,"url":null,"abstract":"<div><p>As the attempts to distribute deep learning using personal data have increased, the importance of federated learning (FL) has also increased. Attempts have been made to overcome the core challenges of federated learning (i.e., statistical and system heterogeneity) using synchronous or asynchronous protocols. However, stragglers reduce training efficiency in terms of latency and accuracy in each protocol, respectively. To solve straggler issues, a semi-asynchronous protocol that combines the two protocols can be applied to FL; however, effectively handling the staleness of the local model is a difficult problem. We proposed SASAFL to solve the training inefficiency caused by staleness in semi-asynchronous FL. SASAFL enables stable training by considering the quality of the global model to synchronise the servers and clients. In addition, it achieves high accuracy and low latency by adjusting the number of participating clients in response to changes in global loss and immediately processing clients that did not to participate in the previous round. An evaluation was conducted under various conditions to verify the effectiveness of the SASAFL. SASAFL achieved 19.69%p higher accuracy than the baseline, 2.32 times higher round-to-accuracy and 2.24 times higher latency-to-accuracy. Additionally, SASAFL always achieved target accuracy that the baseline can't reach.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"193 ","pages":"Article 104950"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Staleness aware semi-asynchronous federated learning\",\"authors\":\"Miri Yu, Jiheon Choi, Jaehyun Lee, Sangyoon Oh\",\"doi\":\"10.1016/j.jpdc.2024.104950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the attempts to distribute deep learning using personal data have increased, the importance of federated learning (FL) has also increased. Attempts have been made to overcome the core challenges of federated learning (i.e., statistical and system heterogeneity) using synchronous or asynchronous protocols. However, stragglers reduce training efficiency in terms of latency and accuracy in each protocol, respectively. To solve straggler issues, a semi-asynchronous protocol that combines the two protocols can be applied to FL; however, effectively handling the staleness of the local model is a difficult problem. We proposed SASAFL to solve the training inefficiency caused by staleness in semi-asynchronous FL. SASAFL enables stable training by considering the quality of the global model to synchronise the servers and clients. In addition, it achieves high accuracy and low latency by adjusting the number of participating clients in response to changes in global loss and immediately processing clients that did not to participate in the previous round. An evaluation was conducted under various conditions to verify the effectiveness of the SASAFL. SASAFL achieved 19.69%p higher accuracy than the baseline, 2.32 times higher round-to-accuracy and 2.24 times higher latency-to-accuracy. Additionally, SASAFL always achieved target accuracy that the baseline can't reach.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"193 \",\"pages\":\"Article 104950\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S074373152400114X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074373152400114X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
As the attempts to distribute deep learning using personal data have increased, the importance of federated learning (FL) has also increased. Attempts have been made to overcome the core challenges of federated learning (i.e., statistical and system heterogeneity) using synchronous or asynchronous protocols. However, stragglers reduce training efficiency in terms of latency and accuracy in each protocol, respectively. To solve straggler issues, a semi-asynchronous protocol that combines the two protocols can be applied to FL; however, effectively handling the staleness of the local model is a difficult problem. We proposed SASAFL to solve the training inefficiency caused by staleness in semi-asynchronous FL. SASAFL enables stable training by considering the quality of the global model to synchronise the servers and clients. In addition, it achieves high accuracy and low latency by adjusting the number of participating clients in response to changes in global loss and immediately processing clients that did not to participate in the previous round. An evaluation was conducted under various conditions to verify the effectiveness of the SASAFL. SASAFL achieved 19.69%p higher accuracy than the baseline, 2.32 times higher round-to-accuracy and 2.24 times higher latency-to-accuracy. Additionally, SASAFL always achieved target accuracy that the baseline can't reach.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.