从科学文献中自动提取肿瘤疗效终点的深度学习 NLP 研究

Aline Gendrin-Brokmann , Eden Harrison , Julianne Noveras , Leonidas Souliotis , Harris Vince , Ines Smit , Francisco Costa , David Milward , Sashka Dimitrievska , Paul Metcalfe , Emilie Louvet
{"title":"从科学文献中自动提取肿瘤疗效终点的深度学习 NLP 研究","authors":"Aline Gendrin-Brokmann ,&nbsp;Eden Harrison ,&nbsp;Julianne Noveras ,&nbsp;Leonidas Souliotis ,&nbsp;Harris Vince ,&nbsp;Ines Smit ,&nbsp;Francisco Costa ,&nbsp;David Milward ,&nbsp;Sashka Dimitrievska ,&nbsp;Paul Metcalfe ,&nbsp;Emilie Louvet","doi":"10.1016/j.ibmed.2024.100152","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Benchmarking drug efficacy is a critical step in clinical trial design and planning. The challenge is that much of the data on efficacy endpoints is stored in scientific papers in free text form, so extraction of such data is currently a largely manual task. Our objective is to automate this task as much as possible.</p></div><div><h3>Methods</h3><p>In this study we have developed and optimised a framework to extract efficacy endpoints from text in scientific papers, using a machine learning approach.</p></div><div><h3>Results</h3><p>Our machine learning model predicts 25 classes associated with efficacy endpoints and leads to high F1 scores (harmonic mean of precision and recall) of 96.4 % on the test set, and 93.9 % and 93.7 % on two case studies.</p></div><div><h3>Conclusion</h3><p>These methods were evaluated against – and showed strong agreement with – subject matter experts and show significant promise in the future of automating the extraction of clinical endpoints from free text.</p></div><div><h3>Significance</h3><p>Clinical information extraction from text data is currently a laborious manual task which scales poorly and is prone to human error. Demonstrating the ability to extract efficacy endpoints automatically shows great promise for accelerating clinical trial design moving forwards.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100152"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266652122400019X/pdfft?md5=a92e134878dd46a959c3a33708e38779&pid=1-s2.0-S266652122400019X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating deep-learning NLP for automating the extraction of oncology efficacy endpoints from scientific literature\",\"authors\":\"Aline Gendrin-Brokmann ,&nbsp;Eden Harrison ,&nbsp;Julianne Noveras ,&nbsp;Leonidas Souliotis ,&nbsp;Harris Vince ,&nbsp;Ines Smit ,&nbsp;Francisco Costa ,&nbsp;David Milward ,&nbsp;Sashka Dimitrievska ,&nbsp;Paul Metcalfe ,&nbsp;Emilie Louvet\",\"doi\":\"10.1016/j.ibmed.2024.100152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Benchmarking drug efficacy is a critical step in clinical trial design and planning. The challenge is that much of the data on efficacy endpoints is stored in scientific papers in free text form, so extraction of such data is currently a largely manual task. Our objective is to automate this task as much as possible.</p></div><div><h3>Methods</h3><p>In this study we have developed and optimised a framework to extract efficacy endpoints from text in scientific papers, using a machine learning approach.</p></div><div><h3>Results</h3><p>Our machine learning model predicts 25 classes associated with efficacy endpoints and leads to high F1 scores (harmonic mean of precision and recall) of 96.4 % on the test set, and 93.9 % and 93.7 % on two case studies.</p></div><div><h3>Conclusion</h3><p>These methods were evaluated against – and showed strong agreement with – subject matter experts and show significant promise in the future of automating the extraction of clinical endpoints from free text.</p></div><div><h3>Significance</h3><p>Clinical information extraction from text data is currently a laborious manual task which scales poorly and is prone to human error. Demonstrating the ability to extract efficacy endpoints automatically shows great promise for accelerating clinical trial design moving forwards.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266652122400019X/pdfft?md5=a92e134878dd46a959c3a33708e38779&pid=1-s2.0-S266652122400019X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652122400019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122400019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标以药物疗效为基准是临床试验设计和规划的关键步骤。面临的挑战是,大部分疗效终点数据都以自由文本形式存储在科学论文中,因此提取此类数据目前主要是一项人工任务。我们的机器学习模型预测了与疗效终点相关的 25 个类别,并在测试集上获得了 96.4% 的高 F1 分数(精确度和召回率的调和平均值),以及 93.9% 和 93.7% 的高 F1 分数(精确度和召回率的调和平均值)。结论根据主题专家的意见对这些方法进行了评估,结果表明这些方法与主题专家的意见非常一致,在未来从自由文本中自动提取临床终点方面大有可为。展示自动提取疗效终点的能力为加快临床试验设计的前进步伐带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating deep-learning NLP for automating the extraction of oncology efficacy endpoints from scientific literature

Objective

Benchmarking drug efficacy is a critical step in clinical trial design and planning. The challenge is that much of the data on efficacy endpoints is stored in scientific papers in free text form, so extraction of such data is currently a largely manual task. Our objective is to automate this task as much as possible.

Methods

In this study we have developed and optimised a framework to extract efficacy endpoints from text in scientific papers, using a machine learning approach.

Results

Our machine learning model predicts 25 classes associated with efficacy endpoints and leads to high F1 scores (harmonic mean of precision and recall) of 96.4 % on the test set, and 93.9 % and 93.7 % on two case studies.

Conclusion

These methods were evaluated against – and showed strong agreement with – subject matter experts and show significant promise in the future of automating the extraction of clinical endpoints from free text.

Significance

Clinical information extraction from text data is currently a laborious manual task which scales poorly and is prone to human error. Demonstrating the ability to extract efficacy endpoints automatically shows great promise for accelerating clinical trial design moving forwards.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1