Emre Dereli , Jordy Mbendou II , Vidhin Patel , Christian Mittelstedt
{"title":"带有添加式制造晶格芯材的复合材料夹层结构的分析和数值分析","authors":"Emre Dereli , Jordy Mbendou II , Vidhin Patel , Christian Mittelstedt","doi":"10.1016/j.jcomc.2024.100484","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an analytical and numerical analysis of a hybrid sandwich structure with a lattice core produced by additive manufacturing with composite facesheets is carried out. This paper aims to analytically calculate the mechanical behavior of the hybrid sandwich structure under three-point bending and to verify the results by the finite element method. The analytical method used in this article for the analysis of the composite sandwich structure is the First-Order Shear Deformation Theory (FSDT). The numerical analysis of the hybrid sandwich structure was performed in ANSYS. In the analyses, homogenized models of lattice structures, which had been previously validated, were employed to reduce the number of elements and thereby save time during the solution process. As a result of the study, an extensive investigation into the deformation, shear, and normal stress values of sandwich structures with lattice cores of varying aspect ratios has been carried out. The findings suggest a potential for optimization in lightweight structures, which could lead to innovative advancements in design and manufacturing processes within the aerospace and automotive sectors.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"14 ","pages":"Article 100484"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000537/pdfft?md5=db2034f5f85f5d94ff3f7facce404224&pid=1-s2.0-S2666682024000537-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analytical and numerical analysis of composite sandwich structures with additively manufactured lattice cores\",\"authors\":\"Emre Dereli , Jordy Mbendou II , Vidhin Patel , Christian Mittelstedt\",\"doi\":\"10.1016/j.jcomc.2024.100484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, an analytical and numerical analysis of a hybrid sandwich structure with a lattice core produced by additive manufacturing with composite facesheets is carried out. This paper aims to analytically calculate the mechanical behavior of the hybrid sandwich structure under three-point bending and to verify the results by the finite element method. The analytical method used in this article for the analysis of the composite sandwich structure is the First-Order Shear Deformation Theory (FSDT). The numerical analysis of the hybrid sandwich structure was performed in ANSYS. In the analyses, homogenized models of lattice structures, which had been previously validated, were employed to reduce the number of elements and thereby save time during the solution process. As a result of the study, an extensive investigation into the deformation, shear, and normal stress values of sandwich structures with lattice cores of varying aspect ratios has been carried out. The findings suggest a potential for optimization in lightweight structures, which could lead to innovative advancements in design and manufacturing processes within the aerospace and automotive sectors.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"14 \",\"pages\":\"Article 100484\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000537/pdfft?md5=db2034f5f85f5d94ff3f7facce404224&pid=1-s2.0-S2666682024000537-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Analytical and numerical analysis of composite sandwich structures with additively manufactured lattice cores
In this study, an analytical and numerical analysis of a hybrid sandwich structure with a lattice core produced by additive manufacturing with composite facesheets is carried out. This paper aims to analytically calculate the mechanical behavior of the hybrid sandwich structure under three-point bending and to verify the results by the finite element method. The analytical method used in this article for the analysis of the composite sandwich structure is the First-Order Shear Deformation Theory (FSDT). The numerical analysis of the hybrid sandwich structure was performed in ANSYS. In the analyses, homogenized models of lattice structures, which had been previously validated, were employed to reduce the number of elements and thereby save time during the solution process. As a result of the study, an extensive investigation into the deformation, shear, and normal stress values of sandwich structures with lattice cores of varying aspect ratios has been carried out. The findings suggest a potential for optimization in lightweight structures, which could lead to innovative advancements in design and manufacturing processes within the aerospace and automotive sectors.