揭示多源汇系统的控制因素:巴伦支海西南部早中生代地层前向模型

IF 2.8 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Basin Research Pub Date : 2024-07-10 DOI:10.1111/bre.12883
Amando P. E. Lasabuda, Domenico Chiarella, Tor O. Sømme, Sten-Andreas Grundvåg, Anthony G. Doré, Grandika Primadani, Tom Arne Rydningen, Jan Sverre Laberg, Alfred Hanssen
{"title":"揭示多源汇系统的控制因素:巴伦支海西南部早中生代地层前向模型","authors":"Amando P. E. Lasabuda,&nbsp;Domenico Chiarella,&nbsp;Tor O. Sømme,&nbsp;Sten-Andreas Grundvåg,&nbsp;Anthony G. Doré,&nbsp;Grandika Primadani,&nbsp;Tom Arne Rydningen,&nbsp;Jan Sverre Laberg,&nbsp;Alfred Hanssen","doi":"10.1111/bre.12883","DOIUrl":null,"url":null,"abstract":"<p>Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12883","citationCount":"0","resultStr":"{\"title\":\"Unravelling controls on multi-source-to-sink systems: A stratigraphic forward model of the early–middle Cenozoic of the SW Barents Sea\",\"authors\":\"Amando P. E. Lasabuda,&nbsp;Domenico Chiarella,&nbsp;Tor O. Sømme,&nbsp;Sten-Andreas Grundvåg,&nbsp;Anthony G. Doré,&nbsp;Grandika Primadani,&nbsp;Tom Arne Rydningen,&nbsp;Jan Sverre Laberg,&nbsp;Alfred Hanssen\",\"doi\":\"10.1111/bre.12883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.</p>\",\"PeriodicalId\":8712,\"journal\":{\"name\":\"Basin Research\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12883\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basin Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bre.12883\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12883","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

源-汇动力学受到侵蚀、沉积物转移和沉积之间复杂的相互作用的影响,尤其是在不断变化的构造和气候环境中。在此,我们采用最先进的数值方法,利用地层前向建模(SFM)来预测多源-汇系统的盆地-填充结构。建模过程考虑了关键的源-汇参数,如排水量、沉积负荷和粒度,以模拟各种沉积过程和输运机制,反映了流域侵蚀、沉降、沉积和盆地填充之间的动态相互作用。沿巴伦支海西南大陆架边缘的新生代演替为研究源-汇系统的控制提供了一个关键区域,该系统是在格陵兰板块和欧亚板块分离时北大西洋开辟期间(约 55 千兆年前)形成的。此外,第四纪(约 2.7 千兆年)北半球大冰川时期的逐渐冷却也影响了巴伦支海大陆架西部边缘沉积物流向的时空演变。本研究旨在通过可持续海洋学模拟,确定不同源区在源-汇框架内的相对重要性。在早始新世,巴伦支海大陆架西南部经历了来自三个主要源区的相对均等的沉积物输送:(i) 北部的格陵兰岛;(ii) 东部的斯塔彭高地(代表当地的源地形);(iii) 南部的一个主要源区(芬诺斯坎迪亚)。在中始新世,我们的最佳拟合建模方案表明,北部和东部的局部源头比南部源头占优势,共同向盆地提供了大量的沙土,Sørvestsnaget 盆地的海底扇就是证明。在渐新世(约 33 Ma)和中新世(约 23 Ma),由于陆架范围内的隆起,大量沉积物来自东部。最后,本研究强调了多源-汇系统中沉积物转移的动态性质和控制,并展示了 SFM 在揭示地层记录中的构造和气候信号方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unravelling controls on multi-source-to-sink systems: A stratigraphic forward model of the early–middle Cenozoic of the SW Barents Sea

Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basin Research
Basin Research 地学-地球科学综合
CiteScore
7.00
自引率
9.40%
发文量
88
审稿时长
>12 weeks
期刊介绍: Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.
期刊最新文献
Spatiotemporal Growth of Seismic-Scale Syn-Flexural Normal Faults in the German Molasse Basin Formation of the Central Tibet Watershed Mountains in the Late Jurassic: Evidence From Provenance Mapping of the Source‐to‐Sink System in the Qiangtang Basin Buried Pockmarks Associated With Listric Faults of Salt Minibasins (Espírito Santo, SE Brazil): Evidence for Local Hydrocarbon Escape Since the Miocene Serpentinite–Sediment Associations: Provenance Controlled by Competing Extensional–Contractional Tectonic Processes During the Evolution of the Northern Apennines (Eastern Elba Island, Tuscany) Kinematics of Submarine Channels in Response to Bank Failures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1