Amando P. E. Lasabuda, Domenico Chiarella, Tor O. Sømme, Sten-Andreas Grundvåg, Anthony G. Doré, Grandika Primadani, Tom Arne Rydningen, Jan Sverre Laberg, Alfred Hanssen
{"title":"揭示多源汇系统的控制因素:巴伦支海西南部早中生代地层前向模型","authors":"Amando P. E. Lasabuda, Domenico Chiarella, Tor O. Sømme, Sten-Andreas Grundvåg, Anthony G. Doré, Grandika Primadani, Tom Arne Rydningen, Jan Sverre Laberg, Alfred Hanssen","doi":"10.1111/bre.12883","DOIUrl":null,"url":null,"abstract":"<p>Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12883","citationCount":"0","resultStr":"{\"title\":\"Unravelling controls on multi-source-to-sink systems: A stratigraphic forward model of the early–middle Cenozoic of the SW Barents Sea\",\"authors\":\"Amando P. E. Lasabuda, Domenico Chiarella, Tor O. Sømme, Sten-Andreas Grundvåg, Anthony G. Doré, Grandika Primadani, Tom Arne Rydningen, Jan Sverre Laberg, Alfred Hanssen\",\"doi\":\"10.1111/bre.12883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.</p>\",\"PeriodicalId\":8712,\"journal\":{\"name\":\"Basin Research\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12883\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basin Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bre.12883\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12883","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Unravelling controls on multi-source-to-sink systems: A stratigraphic forward model of the early–middle Cenozoic of the SW Barents Sea
Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.