研究热冲压、纤维方向和金属厚度对纤维金属层压板成型性的影响

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Applied Composite Materials Pub Date : 2024-07-10 DOI:10.1007/s10443-024-10250-z
Hamza Blala, Cheng Pengzhi, Zhang Shenglun, Cheng Gang, Ruan Shangwen, Meng Zhang
{"title":"研究热冲压、纤维方向和金属厚度对纤维金属层压板成型性的影响","authors":"Hamza Blala,&nbsp;Cheng Pengzhi,&nbsp;Zhang Shenglun,&nbsp;Cheng Gang,&nbsp;Ruan Shangwen,&nbsp;Meng Zhang","doi":"10.1007/s10443-024-10250-z","DOIUrl":null,"url":null,"abstract":"<div><p>Despite being invented several decades ago, fiber metal laminates (FMLs) still encounter challenges in large-scale manufacturing, especially in forming small and complex-shaped components. These challenges arise from the limited strain rate of the fiber layers compared to the metallic layers. Consequently, conventional approaches to form FML parts are often inadequate. To produce parts free of defects such as fractures and wrinkles, this study investigates the effects of Thermo-stamping (TH-S), in addition to fiber orientation, on the forming behavior of FMLs, employing two different aluminum layer thicknesses. A comprehensive approach combining finite element simulations and experimental analyses was employed. The study investigated thinning of aluminum alloy layers, stress distributions across different layers, and the influence of fiber orientation. The FML blanks are made of a middle woven glass fiber prepreg with a thickness of 0.2 mm, using a thermosetting epoxy system, and Al 2024-T3 alloy sheets with varying thicknesses of 0.3 mm and 0.5 mm. Material behavior was evaluated using Abaqus software, applying the Johnson-Cook criterion for damage initiation in ductile metals and Hashin’s theory for damage initiation in fiber-reinforced composites. These simulations were then compared with experimental results. The findings highlight the potential of the TH-S process to enhance the forming performance of FMLs, particularly evident in the case of the 0°/45° middle layer fiber, which exhibits a higher forming depth and a more uniform thickness distribution. Additionally, a greater flexibility of the glass fiber under the 0°/45° layup compared to the 0/90 layup was detected. This flexibility provides the aluminum layers with more freedom of deformation in the plastic domain. These advancements hold promise for widespread industrial applications of FMLs.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1767 - 1789"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Impact of Thermo-Stamping, Fiber Orientation, and Metal Thickness on the Formability of Fiber Metal Laminates\",\"authors\":\"Hamza Blala,&nbsp;Cheng Pengzhi,&nbsp;Zhang Shenglun,&nbsp;Cheng Gang,&nbsp;Ruan Shangwen,&nbsp;Meng Zhang\",\"doi\":\"10.1007/s10443-024-10250-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite being invented several decades ago, fiber metal laminates (FMLs) still encounter challenges in large-scale manufacturing, especially in forming small and complex-shaped components. These challenges arise from the limited strain rate of the fiber layers compared to the metallic layers. Consequently, conventional approaches to form FML parts are often inadequate. To produce parts free of defects such as fractures and wrinkles, this study investigates the effects of Thermo-stamping (TH-S), in addition to fiber orientation, on the forming behavior of FMLs, employing two different aluminum layer thicknesses. A comprehensive approach combining finite element simulations and experimental analyses was employed. The study investigated thinning of aluminum alloy layers, stress distributions across different layers, and the influence of fiber orientation. The FML blanks are made of a middle woven glass fiber prepreg with a thickness of 0.2 mm, using a thermosetting epoxy system, and Al 2024-T3 alloy sheets with varying thicknesses of 0.3 mm and 0.5 mm. Material behavior was evaluated using Abaqus software, applying the Johnson-Cook criterion for damage initiation in ductile metals and Hashin’s theory for damage initiation in fiber-reinforced composites. These simulations were then compared with experimental results. The findings highlight the potential of the TH-S process to enhance the forming performance of FMLs, particularly evident in the case of the 0°/45° middle layer fiber, which exhibits a higher forming depth and a more uniform thickness distribution. Additionally, a greater flexibility of the glass fiber under the 0°/45° layup compared to the 0/90 layup was detected. This flexibility provides the aluminum layers with more freedom of deformation in the plastic domain. These advancements hold promise for widespread industrial applications of FMLs.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 5\",\"pages\":\"1767 - 1789\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-024-10250-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10250-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

尽管纤维金属层压板(FMLs)早在几十年前就已发明,但在大规模制造过程中,尤其是在制造形状复杂的小型部件时,仍会遇到各种挑战。这些挑战源于纤维层与金属层相比有限的应变率。因此,传统的 FML 零件成型方法往往是不够的。为了生产出无断裂和褶皱等缺陷的零件,本研究采用两种不同厚度的铝层,研究了热冲压(TH-S)以及纤维取向对 FML 成型行为的影响。研究采用了一种结合有限元模拟和实验分析的综合方法。研究调查了铝合金层的减薄、不同层间的应力分布以及纤维取向的影响。FML 坯料由厚度为 0.2 毫米的中间编织玻璃纤维预浸料和厚度为 0.3 毫米和 0.5 毫米的铝 2024-T3 合金板材组成,预浸料采用热固性环氧树脂体系。使用 Abaqus 软件对材料行为进行了评估,应用约翰逊-库克准则评估了韧性金属的损伤起始,并应用哈申理论评估了纤维增强复合材料的损伤起始。然后将这些模拟结果与实验结果进行了比较。研究结果凸显了 TH-S 工艺在提高 FML 成型性能方面的潜力,尤其是在 0°/45° 中间层纤维的情况下,其成型深度更高,厚度分布更均匀。此外,与 0/90 层压相比,0°/45° 层压下的玻璃纤维具有更大的柔韧性。这种柔韧性为铝层提供了更大的塑性变形自由度。这些进步为 FML 的广泛工业应用带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Impact of Thermo-Stamping, Fiber Orientation, and Metal Thickness on the Formability of Fiber Metal Laminates

Despite being invented several decades ago, fiber metal laminates (FMLs) still encounter challenges in large-scale manufacturing, especially in forming small and complex-shaped components. These challenges arise from the limited strain rate of the fiber layers compared to the metallic layers. Consequently, conventional approaches to form FML parts are often inadequate. To produce parts free of defects such as fractures and wrinkles, this study investigates the effects of Thermo-stamping (TH-S), in addition to fiber orientation, on the forming behavior of FMLs, employing two different aluminum layer thicknesses. A comprehensive approach combining finite element simulations and experimental analyses was employed. The study investigated thinning of aluminum alloy layers, stress distributions across different layers, and the influence of fiber orientation. The FML blanks are made of a middle woven glass fiber prepreg with a thickness of 0.2 mm, using a thermosetting epoxy system, and Al 2024-T3 alloy sheets with varying thicknesses of 0.3 mm and 0.5 mm. Material behavior was evaluated using Abaqus software, applying the Johnson-Cook criterion for damage initiation in ductile metals and Hashin’s theory for damage initiation in fiber-reinforced composites. These simulations were then compared with experimental results. The findings highlight the potential of the TH-S process to enhance the forming performance of FMLs, particularly evident in the case of the 0°/45° middle layer fiber, which exhibits a higher forming depth and a more uniform thickness distribution. Additionally, a greater flexibility of the glass fiber under the 0°/45° layup compared to the 0/90 layup was detected. This flexibility provides the aluminum layers with more freedom of deformation in the plastic domain. These advancements hold promise for widespread industrial applications of FMLs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
期刊最新文献
A Coupled Elastoplastic-Damage Analytical Model for 3D Resin-Matrix Woven Composites Effect of Temperature on the Mixed mode I/II Translaminar Fracture of Epoxy Composites Reinforced with Cotton Fibers Experimental Characterisation of Cure-Dependent Spring-Back Behaviour of Metal-Composite Laminates in a Hot-Pressing Process Cutting Force Model of SiCp/Al Composites in Ultrasonic Elliptical Vibration Assisted Cutting with Negative Rake Angle Experimental and Simulation Analysis of the Mechanical Deterioration Mechanisms in SiCp/A356 Composites Under Thermal Cycling Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1