Rima Kumari, Tamoghna Saha, Pankaj Kumar, A. K. Singh
{"title":"CRISPR/Cas9 介导的基因组编辑技术控制农作物中的秋绵虫(Spodoptera frugiperda),特别是在玉米中的应用","authors":"Rima Kumari, Tamoghna Saha, Pankaj Kumar, A. K. Singh","doi":"10.1007/s12298-024-01486-x","DOIUrl":null,"url":null,"abstract":"<p>Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including <i>Spodoptera frugiperda</i>. On the other hand, this new technique can change an insect’s DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"6 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9-mediated genome editing technique to control fall armyworm (Spodoptera frugiperda) in crop plants with special reference to maize\",\"authors\":\"Rima Kumari, Tamoghna Saha, Pankaj Kumar, A. K. Singh\",\"doi\":\"10.1007/s12298-024-01486-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including <i>Spodoptera frugiperda</i>. On the other hand, this new technique can change an insect’s DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-024-01486-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01486-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
CRISPR/Cas9-mediated genome editing technique to control fall armyworm (Spodoptera frugiperda) in crop plants with special reference to maize
Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including Spodoptera frugiperda. On the other hand, this new technique can change an insect’s DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.