壳聚糖涂层作为一种策略,可提高苗后除草效率并改变纳米特拉嗪(Nanoatrazine)与柔毛鸭跖草(Bidens pilosa)的相互作用。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-03-05 Epub Date: 2024-07-12 DOI:10.1021/acsami.4c03800
Bruno T Sousa, Lucas B Carvalho, Ana C Preisler, Telma Saraiva-Santos, Jhones L Oliveira, Waldiceu A Verri, Giliardi Dalazen, Leonardo F Fraceto, Halley Oliveira
{"title":"壳聚糖涂层作为一种策略,可提高苗后除草效率并改变纳米特拉嗪(Nanoatrazine)与柔毛鸭跖草(Bidens pilosa)的相互作用。","authors":"Bruno T Sousa, Lucas B Carvalho, Ana C Preisler, Telma Saraiva-Santos, Jhones L Oliveira, Waldiceu A Verri, Giliardi Dalazen, Leonardo F Fraceto, Halley Oliveira","doi":"10.1021/acsami.4c03800","DOIUrl":null,"url":null,"abstract":"<p><p>The atrazine nanodelivery system, composed of poly(ε-caprolactone) (PCL+ATZ) nanocapsules (NCs), has demonstrated efficient delivery of the active ingredient to target plants in previous studies, leading to greater herbicide effectiveness than conventional formulations. Established nanosystems can be enhanced or modified to generate new biological activity patterns. Therefore, this study aimed to evaluate the effect of chitosan coating of PCL+ATZ NCs on herbicidal activity and interaction mechanisms with <i>Bidens pilosa</i> plants. Chitosan-coated NCs (PCL/CS+ATZ) were synthesized and characterized for size, zeta potential, polydispersity, and encapsulation efficiency. Herbicidal efficiency was assessed in postemergence greenhouse trials, comparing the effects of PCL/CS+ATZ NCs (coated), PCL+ATZ NCs (uncoated), and conventional atrazine (ATZ) on photosystem II (PSII) activity and weed control. Using a hydroponic system, we evaluated the root absorption and shoot translocation of fluorescently labeled NCs. PCL/CS+ATZ presented a positive zeta potential (25 mV), a size of 200 nm, and an efficiency of atrazine encapsulation higher than 90%. The postemergent herbicidal activity assay showed an efficiency gain of PSII activity inhibition of up to 58% compared to ATZ and PCL+ATZ at 96 h postapplication. The evaluation of weed control 14 days after application ratified the positive effect of chitosan coating on herbicidal activity, as the application of PCL/CS+ATZ at 1000 g of a.i. ha<sup>-1</sup> resulted in better control than ATZ at 2000 g of a.i. ha<sup>-1</sup> and PCL+ATZ at 1000 g of a.i. ha<sup>-1</sup>. In the hydroponic experiment, chitosan-coated NCs labeled with a fluorescent probe accumulated in the root cortex, with a small quantity reaching the vascular cylinder and leaves up to 72 h after exposure. This behavior resulted in lower leaf atrazine levels and PSII inhibition than ATZ. In summary, chitosan coating of nanoatrazine improved the herbicidal activity against <i>B. pilosa</i> plants when applied to the leaves but negatively affected the root-to-shoot translocation of the herbicide. This study opens avenues for further investigations to improve and modify established nanosystems, paving the way for developing novel biological activity patterns.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"13122-13134"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan Coating as a Strategy to Increase Postemergent Herbicidal Efficiency and Alter the Interaction of Nanoatrazine with <i>Bidens pilosa</i> Plants.\",\"authors\":\"Bruno T Sousa, Lucas B Carvalho, Ana C Preisler, Telma Saraiva-Santos, Jhones L Oliveira, Waldiceu A Verri, Giliardi Dalazen, Leonardo F Fraceto, Halley Oliveira\",\"doi\":\"10.1021/acsami.4c03800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The atrazine nanodelivery system, composed of poly(ε-caprolactone) (PCL+ATZ) nanocapsules (NCs), has demonstrated efficient delivery of the active ingredient to target plants in previous studies, leading to greater herbicide effectiveness than conventional formulations. Established nanosystems can be enhanced or modified to generate new biological activity patterns. Therefore, this study aimed to evaluate the effect of chitosan coating of PCL+ATZ NCs on herbicidal activity and interaction mechanisms with <i>Bidens pilosa</i> plants. Chitosan-coated NCs (PCL/CS+ATZ) were synthesized and characterized for size, zeta potential, polydispersity, and encapsulation efficiency. Herbicidal efficiency was assessed in postemergence greenhouse trials, comparing the effects of PCL/CS+ATZ NCs (coated), PCL+ATZ NCs (uncoated), and conventional atrazine (ATZ) on photosystem II (PSII) activity and weed control. Using a hydroponic system, we evaluated the root absorption and shoot translocation of fluorescently labeled NCs. PCL/CS+ATZ presented a positive zeta potential (25 mV), a size of 200 nm, and an efficiency of atrazine encapsulation higher than 90%. The postemergent herbicidal activity assay showed an efficiency gain of PSII activity inhibition of up to 58% compared to ATZ and PCL+ATZ at 96 h postapplication. The evaluation of weed control 14 days after application ratified the positive effect of chitosan coating on herbicidal activity, as the application of PCL/CS+ATZ at 1000 g of a.i. ha<sup>-1</sup> resulted in better control than ATZ at 2000 g of a.i. ha<sup>-1</sup> and PCL+ATZ at 1000 g of a.i. ha<sup>-1</sup>. In the hydroponic experiment, chitosan-coated NCs labeled with a fluorescent probe accumulated in the root cortex, with a small quantity reaching the vascular cylinder and leaves up to 72 h after exposure. This behavior resulted in lower leaf atrazine levels and PSII inhibition than ATZ. In summary, chitosan coating of nanoatrazine improved the herbicidal activity against <i>B. pilosa</i> plants when applied to the leaves but negatively affected the root-to-shoot translocation of the herbicide. This study opens avenues for further investigations to improve and modify established nanosystems, paving the way for developing novel biological activity patterns.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"13122-13134\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c03800\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c03800","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由聚(ε-己内酯)(PCL+ATZ)纳米胶囊(NCs)组成的阿特拉津纳米给药系统在以前的研究中已证明可将活性成分高效地输送到目标植物,从而使除草剂比传统制剂更有效。已建立的纳米系统可以通过增强或改良产生新的生物活性模式。因此,本研究旨在评估壳聚糖包覆 PCL+ATZ NCs 对除草活性的影响以及与 Bidens pilosa 植物的相互作用机制。研究人员合成了壳聚糖包覆的 NCs(PCL/CS+ATZ),并对其尺寸、ZETA电位、多分散性和封装效率进行了表征。在芽后温室试验中对除草效率进行了评估,比较了 PCL/CS+ATZ NCs(包衣)、PCL+ATZ NCs(未包衣)和传统阿特拉津(ATZ)对光系统 II(PSII)活性和杂草控制的影响。我们利用水培系统评估了荧光标记的 NCs 的根吸收和芽转移情况。PCL/CS+ATZ 的 zeta 电位为正值(25 mV),尺寸为 200 nm,阿特拉津的封装效率高于 90%。苗后除草活性测定显示,与 ATZ 和 PCL+ATZ 相比,在施药后 96 小时,PSII 活性抑制效率提高了 58%。施药 14 天后对杂草控制情况的评估证实了壳聚糖包衣对除草活性的积极影响,因为施用 PCL/CS+ATZ 1000 g a.i. ha-1 的除草效果优于施用 ATZ 2000 g a.i. ha-1 和 PCL+ATZ 1000 g a.i. ha-1 的除草效果。在水培实验中,用荧光探针标记的壳聚糖包覆的 NCs 在根部皮层中积累,在接触后 72 小时内有少量进入维管柱和叶片。这种行为导致叶片中的阿特拉津水平和 PSII 抑制作用低于 ATZ。总之,在叶片上施用纳米阿特拉津的壳聚糖包衣提高了对柔毛草属植物的除草活性,但对除草剂从根到芽的转移产生了负面影响。这项研究为进一步研究改进和修正已有的纳米系统开辟了道路,为开发新的生物活性模式铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chitosan Coating as a Strategy to Increase Postemergent Herbicidal Efficiency and Alter the Interaction of Nanoatrazine with Bidens pilosa Plants.

The atrazine nanodelivery system, composed of poly(ε-caprolactone) (PCL+ATZ) nanocapsules (NCs), has demonstrated efficient delivery of the active ingredient to target plants in previous studies, leading to greater herbicide effectiveness than conventional formulations. Established nanosystems can be enhanced or modified to generate new biological activity patterns. Therefore, this study aimed to evaluate the effect of chitosan coating of PCL+ATZ NCs on herbicidal activity and interaction mechanisms with Bidens pilosa plants. Chitosan-coated NCs (PCL/CS+ATZ) were synthesized and characterized for size, zeta potential, polydispersity, and encapsulation efficiency. Herbicidal efficiency was assessed in postemergence greenhouse trials, comparing the effects of PCL/CS+ATZ NCs (coated), PCL+ATZ NCs (uncoated), and conventional atrazine (ATZ) on photosystem II (PSII) activity and weed control. Using a hydroponic system, we evaluated the root absorption and shoot translocation of fluorescently labeled NCs. PCL/CS+ATZ presented a positive zeta potential (25 mV), a size of 200 nm, and an efficiency of atrazine encapsulation higher than 90%. The postemergent herbicidal activity assay showed an efficiency gain of PSII activity inhibition of up to 58% compared to ATZ and PCL+ATZ at 96 h postapplication. The evaluation of weed control 14 days after application ratified the positive effect of chitosan coating on herbicidal activity, as the application of PCL/CS+ATZ at 1000 g of a.i. ha-1 resulted in better control than ATZ at 2000 g of a.i. ha-1 and PCL+ATZ at 1000 g of a.i. ha-1. In the hydroponic experiment, chitosan-coated NCs labeled with a fluorescent probe accumulated in the root cortex, with a small quantity reaching the vascular cylinder and leaves up to 72 h after exposure. This behavior resulted in lower leaf atrazine levels and PSII inhibition than ATZ. In summary, chitosan coating of nanoatrazine improved the herbicidal activity against B. pilosa plants when applied to the leaves but negatively affected the root-to-shoot translocation of the herbicide. This study opens avenues for further investigations to improve and modify established nanosystems, paving the way for developing novel biological activity patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Bioabsorbable Stent-Covering with Sustained Anticoagulant Activity Fabricated via Alternate Layer-by-Layer Self-Assembly of Heparin and Silk Fibroin Parallelized Droplet Vitrification for Single-Run Vitrification of Hepatocytes from an Entire Rat Liver In Situ Electrochemical Activation Strategy toward Organic Cation Preintercalated Layered Vanadium-Based Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries Influence of Surface Chemistry and Nanomechanical Properties of Methacrylate-Based Copolymer Thin Films on Keratocyte Cell Adhesion Contact Resistance Optimization in MoS2 Field-Effect Transistors through Reverse Sputtering-Induced Structural Modifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1