Xinran Cao, Bo Liu, Ziqi Wang, Tianxing Pang, Liying Sun, Hideki Kondo, Junmin Li, Ida Bagus Andika, Shengqi Chi
{"title":"从昆虫病原真菌冬虫夏草中鉴定出 Laulavirus 属(Phenuiviridae 科)的一个新成员。","authors":"Xinran Cao, Bo Liu, Ziqi Wang, Tianxing Pang, Liying Sun, Hideki Kondo, Junmin Li, Ida Bagus Andika, Shengqi Chi","doi":"10.1007/s00705-024-06069-5","DOIUrl":null,"url":null,"abstract":"<div><p>The virus family <i>Phenuiviridae</i> (order <i>Hareavirales</i>, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus <i>Cordyceps javanica</i> isolated from a small brown plant hopper (<i>Laodelphax striatellus</i>), and this virus was tentatively named \"Cordyceps javanica negative-strand RNA virus 1\" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1–3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3′- and 5′-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order <i>Hareavirales</i>. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57–80% identity to the RdRP encoded by phenuiviruses in the genus <i>Laulavirus</i>. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47–63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus <i>Laulavirus</i>. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus <i>Laulavirus</i> in the family <i>Phenuiviridae</i>.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"169 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a novel member of the genus Laulavirus (family Phenuiviridae) from the entomopathogenic ascomycete fungus Cordyceps javanica\",\"authors\":\"Xinran Cao, Bo Liu, Ziqi Wang, Tianxing Pang, Liying Sun, Hideki Kondo, Junmin Li, Ida Bagus Andika, Shengqi Chi\",\"doi\":\"10.1007/s00705-024-06069-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The virus family <i>Phenuiviridae</i> (order <i>Hareavirales</i>, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus <i>Cordyceps javanica</i> isolated from a small brown plant hopper (<i>Laodelphax striatellus</i>), and this virus was tentatively named \\\"Cordyceps javanica negative-strand RNA virus 1\\\" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1–3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3′- and 5′-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order <i>Hareavirales</i>. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57–80% identity to the RdRP encoded by phenuiviruses in the genus <i>Laulavirus</i>. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47–63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus <i>Laulavirus</i>. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus <i>Laulavirus</i> in the family <i>Phenuiviridae</i>.</p></div>\",\"PeriodicalId\":8359,\"journal\":{\"name\":\"Archives of Virology\",\"volume\":\"169 8\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00705-024-06069-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-024-06069-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Identification of a novel member of the genus Laulavirus (family Phenuiviridae) from the entomopathogenic ascomycete fungus Cordyceps javanica
The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1–3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3′- and 5′-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57–80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47–63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.