Michael Leung, Marc G Weisskopf, Anna M Modest, Michele R Hacker, Hari S Iyer, Jaime E Hart, Yaguang Wei, Joel Schwartz, Brent A Coull, Francine Laden, Stefania Papatheodorou
{"title":"使用时间到事件数据的参数 g 计算和分布式滞后模型确定早产的关键暴露窗口:以马萨诸塞州东部的回顾性出生队列中的 PM2.5 为例(2011-2016 年)。","authors":"Michael Leung, Marc G Weisskopf, Anna M Modest, Michele R Hacker, Hari S Iyer, Jaime E Hart, Yaguang Wei, Joel Schwartz, Brent A Coull, Francine Laden, Stefania Papatheodorou","doi":"10.1289/EHP13891","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Parametric g-computation is an attractive analytic framework to study the health effects of air pollution. Yet, the ability to explore biologically relevant exposure windows within this framework is underdeveloped.</p><p><strong>Objectives: </strong>We outline a novel framework for how to incorporate complex lag-responses using distributed lag models (DLMs) into parametric g-computation analyses for survival data. We call this approach \"g-survival-DLM\" and illustrate its use examining the association between <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> during pregnancy and the risk of preterm birth (PTB).</p><p><strong>Methods: </strong>We applied the g-survival-DLM approach to estimate the hypothetical static intervention of reducing average <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> in each gestational week by 20% on the risk of PTB among 9,403 deliveries from Beth Israel Deaconess Medical Center, Boston, Massachusetts, 2011-2016. Daily <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> was taken from a <math><mrow><mn>1</mn><mtext>-km</mtext></mrow></math> grid model and assigned to address at birth. Models were adjusted for sociodemographics, time trends, nitrogen dioxide, and temperature. To facilitate implementation, we provide a detailed description of the procedure and accompanying R syntax.</p><p><strong>Results: </strong>There were 762 (8.1%) PTBs in this cohort. The gestational week-specific median <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> concentration was relatively stable across pregnancy at <math><mrow><mo>∼</mo><mn>7</mn><mrow><msup><mrow><mi>μ</mi><mi>g</mi><mo>/</mo><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mrow></math>. We found that our hypothetical intervention strategy changed the cumulative risk of PTB at week 36 (i.e., the end of the preterm period) by <math><mrow><mo>-</mo><mn>0.009</mn></mrow></math> (95% confidence interval: <math><mrow><mo>-</mo><mn>0.034</mn></mrow></math>, 0.007) in comparison with the scenario had we not intervened, which translates to about 86 fewer PTBs in this cohort. We also observed that the critical exposure window appeared to be weeks 5-20.</p><p><strong>Discussion: </strong>We demonstrate that our g-survival-DLM approach produces easier-to-interpret, policy-relevant estimates (due to the g-computation); prevents immortal time bias (due to treating PTB as a time-to-event outcome); and allows for the exploration of critical exposure windows (due to the DLMs). In our illustrative example, we found that reducing fine particulate matter [particulate matter (PM) with aerodynamic diameter <math><mrow><mo>≤</mo><mn>2.5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math> (<math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math>)] during gestational weeks 5-20 could potentially lower the risk of PTB. https://doi.org/10.1289/EHP13891.</p>","PeriodicalId":11862,"journal":{"name":"Environmental Health Perspectives","volume":"132 7","pages":"77002"},"PeriodicalIF":10.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243950/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Using Parametric g-Computation for Time-to-Event Data and Distributed Lag Models to Identify Critical Exposure Windows for Preterm Birth: An Illustrative Example Using <ns0:math><ns0:mrow><ns0:mi>P</ns0:mi><ns0:mrow><ns0:msub><ns0:mrow><ns0:mi>M</ns0:mi></ns0:mrow><ns0:mrow><ns0:mrow><ns0:mn>2.5</ns0:mn></ns0:mrow></ns0:mrow></ns0:msub></ns0:mrow></ns0:mrow></ns0:math> in a Retrospective Birth Cohort Based in Eastern Massachusetts (2011-2016).\",\"authors\":\"Michael Leung, Marc G Weisskopf, Anna M Modest, Michele R Hacker, Hari S Iyer, Jaime E Hart, Yaguang Wei, Joel Schwartz, Brent A Coull, Francine Laden, Stefania Papatheodorou\",\"doi\":\"10.1289/EHP13891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Parametric g-computation is an attractive analytic framework to study the health effects of air pollution. Yet, the ability to explore biologically relevant exposure windows within this framework is underdeveloped.</p><p><strong>Objectives: </strong>We outline a novel framework for how to incorporate complex lag-responses using distributed lag models (DLMs) into parametric g-computation analyses for survival data. We call this approach \\\"g-survival-DLM\\\" and illustrate its use examining the association between <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> during pregnancy and the risk of preterm birth (PTB).</p><p><strong>Methods: </strong>We applied the g-survival-DLM approach to estimate the hypothetical static intervention of reducing average <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> in each gestational week by 20% on the risk of PTB among 9,403 deliveries from Beth Israel Deaconess Medical Center, Boston, Massachusetts, 2011-2016. Daily <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> was taken from a <math><mrow><mn>1</mn><mtext>-km</mtext></mrow></math> grid model and assigned to address at birth. Models were adjusted for sociodemographics, time trends, nitrogen dioxide, and temperature. To facilitate implementation, we provide a detailed description of the procedure and accompanying R syntax.</p><p><strong>Results: </strong>There were 762 (8.1%) PTBs in this cohort. The gestational week-specific median <math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math> concentration was relatively stable across pregnancy at <math><mrow><mo>∼</mo><mn>7</mn><mrow><msup><mrow><mi>μ</mi><mi>g</mi><mo>/</mo><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mrow></math>. We found that our hypothetical intervention strategy changed the cumulative risk of PTB at week 36 (i.e., the end of the preterm period) by <math><mrow><mo>-</mo><mn>0.009</mn></mrow></math> (95% confidence interval: <math><mrow><mo>-</mo><mn>0.034</mn></mrow></math>, 0.007) in comparison with the scenario had we not intervened, which translates to about 86 fewer PTBs in this cohort. We also observed that the critical exposure window appeared to be weeks 5-20.</p><p><strong>Discussion: </strong>We demonstrate that our g-survival-DLM approach produces easier-to-interpret, policy-relevant estimates (due to the g-computation); prevents immortal time bias (due to treating PTB as a time-to-event outcome); and allows for the exploration of critical exposure windows (due to the DLMs). In our illustrative example, we found that reducing fine particulate matter [particulate matter (PM) with aerodynamic diameter <math><mrow><mo>≤</mo><mn>2.5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math> (<math><mrow><mrow><msub><mrow><mrow><mi>PM</mi></mrow></mrow><mrow><mrow><mn>2.5</mn></mrow></mrow></msub></mrow></mrow></math>)] during gestational weeks 5-20 could potentially lower the risk of PTB. https://doi.org/10.1289/EHP13891.</p>\",\"PeriodicalId\":11862,\"journal\":{\"name\":\"Environmental Health Perspectives\",\"volume\":\"132 7\",\"pages\":\"77002\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Health Perspectives\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1289/EHP13891\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Health Perspectives","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1289/EHP13891","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
背景:参数 g 计算是研究空气污染对健康影响的一个极具吸引力的分析框架。然而,在这一框架内探索与生物相关的暴露窗口的能力还不够成熟:我们概述了一个新颖的框架,即如何利用分布式滞后模型(DLM)将复杂的滞后反应纳入生存数据的参数 g 计算分析中。我们将这种方法称为 "g-生存-DLM",并在研究孕期 PM2.5 与早产(PTB)风险之间的关系时对其应用进行了说明:我们采用g-survival-DLM方法估算了2011-2016年马萨诸塞州波士顿贝斯以色列女执事医疗中心的9403例分娩中,将每个孕周的平均PM2.5降低20%对早产风险的假定静态干预。每日 PM2.5 取自 1 公里网格模型,并分配给出生时的地址。模型根据社会人口统计学、时间趋势、二氧化氮和温度进行了调整。为便于实施,我们提供了详细的程序说明和随附的 R 语法:该队列中有 762 例(8.1%)PTB。妊娠周PM2.5浓度中位数在整个孕期相对稳定,为7μg/m3。我们发现,与未采取干预措施的情况相比,我们假设的干预策略使第36周(即早产期结束时)发生PTB的累积风险降低了-0.009(95%置信区间:-0.034,0.007),这意味着该队列中的PTB减少了约86例。我们还观察到,关键的暴露窗口似乎是第 5-20 周:讨论:我们证明了我们的 g 存活率-DLM 方法(由于 g 计算)可产生更易于解释、与政策相关的估计值;防止不朽时间偏差(由于将 PTB 视为时间到事件的结果);并允许探索临界暴露窗口(由于 DLMs)。在我们的示例中,我们发现在妊娠 5-20 周期间减少细颗粒物[空气动力学直径≤2.5μm 的颗粒物(PM2.5)]有可能降低患先天性脑瘫的风险。https://doi.org/10.1289/EHP13891。
Using Parametric g-Computation for Time-to-Event Data and Distributed Lag Models to Identify Critical Exposure Windows for Preterm Birth: An Illustrative Example Using PM2.5 in a Retrospective Birth Cohort Based in Eastern Massachusetts (2011-2016).
Background: Parametric g-computation is an attractive analytic framework to study the health effects of air pollution. Yet, the ability to explore biologically relevant exposure windows within this framework is underdeveloped.
Objectives: We outline a novel framework for how to incorporate complex lag-responses using distributed lag models (DLMs) into parametric g-computation analyses for survival data. We call this approach "g-survival-DLM" and illustrate its use examining the association between during pregnancy and the risk of preterm birth (PTB).
Methods: We applied the g-survival-DLM approach to estimate the hypothetical static intervention of reducing average in each gestational week by 20% on the risk of PTB among 9,403 deliveries from Beth Israel Deaconess Medical Center, Boston, Massachusetts, 2011-2016. Daily was taken from a grid model and assigned to address at birth. Models were adjusted for sociodemographics, time trends, nitrogen dioxide, and temperature. To facilitate implementation, we provide a detailed description of the procedure and accompanying R syntax.
Results: There were 762 (8.1%) PTBs in this cohort. The gestational week-specific median concentration was relatively stable across pregnancy at . We found that our hypothetical intervention strategy changed the cumulative risk of PTB at week 36 (i.e., the end of the preterm period) by (95% confidence interval: , 0.007) in comparison with the scenario had we not intervened, which translates to about 86 fewer PTBs in this cohort. We also observed that the critical exposure window appeared to be weeks 5-20.
Discussion: We demonstrate that our g-survival-DLM approach produces easier-to-interpret, policy-relevant estimates (due to the g-computation); prevents immortal time bias (due to treating PTB as a time-to-event outcome); and allows for the exploration of critical exposure windows (due to the DLMs). In our illustrative example, we found that reducing fine particulate matter [particulate matter (PM) with aerodynamic diameter ()] during gestational weeks 5-20 could potentially lower the risk of PTB. https://doi.org/10.1289/EHP13891.
期刊介绍:
Environmental Health Perspectives (EHP) is a monthly peer-reviewed journal supported by the National Institute of Environmental Health Sciences, part of the National Institutes of Health under the U.S. Department of Health and Human Services. Its mission is to facilitate discussions on the connections between the environment and human health by publishing top-notch research and news. EHP ranks third in Public, Environmental, and Occupational Health, fourth in Toxicology, and fifth in Environmental Sciences.