Pilar Sango-Solanas, Kevin Tse Ve Koon, Eric Van Reeth, Stéphane Nicolle, Jean-François Palierne, Cyrielle Caussy, Olivier Beuf
{"title":"通过基于优化控制的射频脉冲对短 T2 组织的机械特性进行量化的超短回波时间磁共振弹性成像。","authors":"Pilar Sango-Solanas, Kevin Tse Ve Koon, Eric Van Reeth, Stéphane Nicolle, Jean-François Palierne, Cyrielle Caussy, Olivier Beuf","doi":"10.1002/nbm.5210","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the current study is to demonstrate the feasibility of radiofrequency (RF) pulses generated via an optimal control (OC) algorithm to perform magnetic resonance elastography (MRE) and quantify the mechanical properties of materials with very short transverse relaxation times (T2 < 5 ms) for the first time. OC theory applied to MRE provides RF pulses that bring isochromats from the equilibrium state to a fixed target state, which corresponds to the phase pattern of a conventional MRE acquisition. Such RF pulses applied with a constant gradient allow to simultaneously perform slice selection and motion encoding in the slice direction. Unlike conventional MRE, no additional motion-encoding gradients (MEGs) are needed, enabling shorter echo times. OC pulses were implemented both in turbo spin echo (OC rapid acquisition with refocused echoes [RARE]) and ultrashort echo time (OC UTE) sequences to compare their motion-encoding efficiency with the conventional MEG encoding (classical MEG MRE). MRE experiments were carried out on agar phantoms with very short T2 values and on an ex vivo bovine tendon. Magnitude images, wave field images, phase-to-noise ratio (PNR), and shear storage modulus maps were compared between OC RARE, OC UTE, and classical MEG MRE in samples with different T2 values. Shear storage modulus values of the agar phantoms were in agreement with values found in the literature, and that of the bovine tendon was corroborated with rheometry measurements. Only the OC sequences could encode motion in very short T2 samples, and only OC UTE sequences yielded magnitude images enabling proper visualization of short T2 samples and tissues. The OC UTE sequence produced the best PNRs, demonstrating its ability to perform anatomical and mechanical characterization. Its success warrants in vivo confirmation in further studies.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5210"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrashort echo time magnetic resonance elastography for quantification of the mechanical properties of short T2 tissues via optimal control-based radiofrequency pulses.\",\"authors\":\"Pilar Sango-Solanas, Kevin Tse Ve Koon, Eric Van Reeth, Stéphane Nicolle, Jean-François Palierne, Cyrielle Caussy, Olivier Beuf\",\"doi\":\"10.1002/nbm.5210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of the current study is to demonstrate the feasibility of radiofrequency (RF) pulses generated via an optimal control (OC) algorithm to perform magnetic resonance elastography (MRE) and quantify the mechanical properties of materials with very short transverse relaxation times (T2 < 5 ms) for the first time. OC theory applied to MRE provides RF pulses that bring isochromats from the equilibrium state to a fixed target state, which corresponds to the phase pattern of a conventional MRE acquisition. Such RF pulses applied with a constant gradient allow to simultaneously perform slice selection and motion encoding in the slice direction. Unlike conventional MRE, no additional motion-encoding gradients (MEGs) are needed, enabling shorter echo times. OC pulses were implemented both in turbo spin echo (OC rapid acquisition with refocused echoes [RARE]) and ultrashort echo time (OC UTE) sequences to compare their motion-encoding efficiency with the conventional MEG encoding (classical MEG MRE). MRE experiments were carried out on agar phantoms with very short T2 values and on an ex vivo bovine tendon. Magnitude images, wave field images, phase-to-noise ratio (PNR), and shear storage modulus maps were compared between OC RARE, OC UTE, and classical MEG MRE in samples with different T2 values. Shear storage modulus values of the agar phantoms were in agreement with values found in the literature, and that of the bovine tendon was corroborated with rheometry measurements. Only the OC sequences could encode motion in very short T2 samples, and only OC UTE sequences yielded magnitude images enabling proper visualization of short T2 samples and tissues. The OC UTE sequence produced the best PNRs, demonstrating its ability to perform anatomical and mechanical characterization. Its success warrants in vivo confirmation in further studies.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5210\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5210\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Ultrashort echo time magnetic resonance elastography for quantification of the mechanical properties of short T2 tissues via optimal control-based radiofrequency pulses.
The aim of the current study is to demonstrate the feasibility of radiofrequency (RF) pulses generated via an optimal control (OC) algorithm to perform magnetic resonance elastography (MRE) and quantify the mechanical properties of materials with very short transverse relaxation times (T2 < 5 ms) for the first time. OC theory applied to MRE provides RF pulses that bring isochromats from the equilibrium state to a fixed target state, which corresponds to the phase pattern of a conventional MRE acquisition. Such RF pulses applied with a constant gradient allow to simultaneously perform slice selection and motion encoding in the slice direction. Unlike conventional MRE, no additional motion-encoding gradients (MEGs) are needed, enabling shorter echo times. OC pulses were implemented both in turbo spin echo (OC rapid acquisition with refocused echoes [RARE]) and ultrashort echo time (OC UTE) sequences to compare their motion-encoding efficiency with the conventional MEG encoding (classical MEG MRE). MRE experiments were carried out on agar phantoms with very short T2 values and on an ex vivo bovine tendon. Magnitude images, wave field images, phase-to-noise ratio (PNR), and shear storage modulus maps were compared between OC RARE, OC UTE, and classical MEG MRE in samples with different T2 values. Shear storage modulus values of the agar phantoms were in agreement with values found in the literature, and that of the bovine tendon was corroborated with rheometry measurements. Only the OC sequences could encode motion in very short T2 samples, and only OC UTE sequences yielded magnitude images enabling proper visualization of short T2 samples and tissues. The OC UTE sequence produced the best PNRs, demonstrating its ability to perform anatomical and mechanical characterization. Its success warrants in vivo confirmation in further studies.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.