{"title":"关于高维预测回归的 LASSO","authors":"Ziwei Mei, Zhentao Shi","doi":"10.1016/j.jeconom.2024.105809","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines LASSO, a widely-used <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-penalized regression method, in high dimensional linear predictive regressions, particularly when the number of potential predictors exceeds the sample size and numerous unit root regressors are present. The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix. We present new probabilistic bounds for these components, suggesting that LASSO’s rates of convergence are different from those typically observed in cross-sectional cases. When applied to a mixture of stationary, nonstationary, and cointegrated predictors, LASSO maintains its asymptotic guarantee if predictors are scale-standardized. Leveraging machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate, as evidenced by its application to the FRED-MD database.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 2","pages":"Article 105809"},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On LASSO for high dimensional predictive regression\",\"authors\":\"Ziwei Mei, Zhentao Shi\",\"doi\":\"10.1016/j.jeconom.2024.105809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines LASSO, a widely-used <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-penalized regression method, in high dimensional linear predictive regressions, particularly when the number of potential predictors exceeds the sample size and numerous unit root regressors are present. The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix. We present new probabilistic bounds for these components, suggesting that LASSO’s rates of convergence are different from those typically observed in cross-sectional cases. When applied to a mixture of stationary, nonstationary, and cointegrated predictors, LASSO maintains its asymptotic guarantee if predictors are scale-standardized. Leveraging machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate, as evidenced by its application to the FRED-MD database.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"242 2\",\"pages\":\"Article 105809\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624001556\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001556","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
On LASSO for high dimensional predictive regression
This paper examines LASSO, a widely-used -penalized regression method, in high dimensional linear predictive regressions, particularly when the number of potential predictors exceeds the sample size and numerous unit root regressors are present. The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix. We present new probabilistic bounds for these components, suggesting that LASSO’s rates of convergence are different from those typically observed in cross-sectional cases. When applied to a mixture of stationary, nonstationary, and cointegrated predictors, LASSO maintains its asymptotic guarantee if predictors are scale-standardized. Leveraging machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate, as evidenced by its application to the FRED-MD database.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.