提高新型 ITO/ZnSe/CNTs 薄膜太阳能电池的效率

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-07-03 DOI:10.1016/j.chphi.2024.100672
A. Bakour , M. Al-Hattab , O. Bajjou , K. Rahmani
{"title":"提高新型 ITO/ZnSe/CNTs 薄膜太阳能电池的效率","authors":"A. Bakour ,&nbsp;M. Al-Hattab ,&nbsp;O. Bajjou ,&nbsp;K. Rahmani","doi":"10.1016/j.chphi.2024.100672","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel photovoltaic cell design utilizing a layered structure of Indium Tin Oxide (ITO), Zinc Selenide (ZnSe), and Carbon Nanotubes (CNTs) for enhanced solar energy conversion. We employed the Solar Cell Capacity Simulator (SCAPS-1D) to model and optimize the device under AM 1.5 spectrum conditions. Our simulations systematically investigated the influence of key parameters including layer thicknesses, doping concentrations, temperature, back contact work function, and parasitic resistances on cell performance. The optimized structure demonstrated a theoretical power conversion efficiency of 29.91%, with an open-circuit voltage (Voc) of 799 mV, a short-circuit current density (Jsc) of 43.49 mA/cm², and a fill factor (FF) of 86.02%. These promising results are attributed to the synergistic combination of CNTs' broad spectral absorption, ZnSe's effective charge separation, and optimized layer properties. We found that the CNT absorber layer's doping concentration significantly impacted cell performance, with an optimal value of 10¹⁷ cm⁻³. The ZnSe buffer layer thickness showed minimal effect on efficiency within the studied range. Temperature increases from 300 K to 400 K led to a significant efficiency drop from 33.97% to 24.65%, primarily due to Voc reduction. While these results represent idealized conditions and upper theoretical limits, they provide valuable insights for the potential of CNT-based solar cells. This study offers a roadmap for future experimental work in high-efficiency thin-film photovoltaics, highlighting the promise of novel material combinations and the importance of device architecture optimization.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002160/pdfft?md5=f16b48fe15349f7bbbb5d1bfae43db1a&pid=1-s2.0-S2667022424002160-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficiency enhancement of novel ITO/ZnSe/CNTs thin film solar cell\",\"authors\":\"A. Bakour ,&nbsp;M. Al-Hattab ,&nbsp;O. Bajjou ,&nbsp;K. Rahmani\",\"doi\":\"10.1016/j.chphi.2024.100672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a novel photovoltaic cell design utilizing a layered structure of Indium Tin Oxide (ITO), Zinc Selenide (ZnSe), and Carbon Nanotubes (CNTs) for enhanced solar energy conversion. We employed the Solar Cell Capacity Simulator (SCAPS-1D) to model and optimize the device under AM 1.5 spectrum conditions. Our simulations systematically investigated the influence of key parameters including layer thicknesses, doping concentrations, temperature, back contact work function, and parasitic resistances on cell performance. The optimized structure demonstrated a theoretical power conversion efficiency of 29.91%, with an open-circuit voltage (Voc) of 799 mV, a short-circuit current density (Jsc) of 43.49 mA/cm², and a fill factor (FF) of 86.02%. These promising results are attributed to the synergistic combination of CNTs' broad spectral absorption, ZnSe's effective charge separation, and optimized layer properties. We found that the CNT absorber layer's doping concentration significantly impacted cell performance, with an optimal value of 10¹⁷ cm⁻³. The ZnSe buffer layer thickness showed minimal effect on efficiency within the studied range. Temperature increases from 300 K to 400 K led to a significant efficiency drop from 33.97% to 24.65%, primarily due to Voc reduction. While these results represent idealized conditions and upper theoretical limits, they provide valuable insights for the potential of CNT-based solar cells. This study offers a roadmap for future experimental work in high-efficiency thin-film photovoltaics, highlighting the promise of novel material combinations and the importance of device architecture optimization.</p></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002160/pdfft?md5=f16b48fe15349f7bbbb5d1bfae43db1a&pid=1-s2.0-S2667022424002160-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新型光伏电池设计,利用氧化铟锡(ITO)、硒化锌(ZnSe)和碳纳米管(CNTs)的层状结构来增强太阳能转换。我们利用太阳能电池容量模拟器(SCAPS-1D)对 AM 1.5 光谱条件下的设备进行建模和优化。我们的模拟系统研究了层厚度、掺杂浓度、温度、背接触功函数和寄生电阻等关键参数对电池性能的影响。优化结构的理论功率转换效率为 29.91%,开路电压 (Voc) 为 799 mV,短路电流密度 (Jsc) 为 43.49 mA/cm²,填充因子 (FF) 为 86.02%。这些令人鼓舞的结果归功于 CNT 的宽光谱吸收、ZnSe 的有效电荷分离和优化的层特性的协同组合。我们发现,CNT 吸收层的掺杂浓度对电池性能有显著影响,最佳值为 10¹⁷ cm-³。在研究范围内,硒化锌缓冲层厚度对效率的影响微乎其微。温度从 300 K 上升到 400 K 会导致效率从 33.97% 显著下降到 24.65%,这主要是由于 Voc 减少所致。虽然这些结果代表了理想化条件和理论上限,但它们为基于 CNT 的太阳能电池的潜力提供了宝贵的启示。这项研究为未来的高效薄膜光伏实验工作提供了路线图,凸显了新型材料组合的前景和器件结构优化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficiency enhancement of novel ITO/ZnSe/CNTs thin film solar cell

This study presents a novel photovoltaic cell design utilizing a layered structure of Indium Tin Oxide (ITO), Zinc Selenide (ZnSe), and Carbon Nanotubes (CNTs) for enhanced solar energy conversion. We employed the Solar Cell Capacity Simulator (SCAPS-1D) to model and optimize the device under AM 1.5 spectrum conditions. Our simulations systematically investigated the influence of key parameters including layer thicknesses, doping concentrations, temperature, back contact work function, and parasitic resistances on cell performance. The optimized structure demonstrated a theoretical power conversion efficiency of 29.91%, with an open-circuit voltage (Voc) of 799 mV, a short-circuit current density (Jsc) of 43.49 mA/cm², and a fill factor (FF) of 86.02%. These promising results are attributed to the synergistic combination of CNTs' broad spectral absorption, ZnSe's effective charge separation, and optimized layer properties. We found that the CNT absorber layer's doping concentration significantly impacted cell performance, with an optimal value of 10¹⁷ cm⁻³. The ZnSe buffer layer thickness showed minimal effect on efficiency within the studied range. Temperature increases from 300 K to 400 K led to a significant efficiency drop from 33.97% to 24.65%, primarily due to Voc reduction. While these results represent idealized conditions and upper theoretical limits, they provide valuable insights for the potential of CNT-based solar cells. This study offers a roadmap for future experimental work in high-efficiency thin-film photovoltaics, highlighting the promise of novel material combinations and the importance of device architecture optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1