Dawei Dai;Yingge Liu;Yutang Li;Shiyu Fu;Shuyin Xia;Guoyin Wang
{"title":"LGRL:用于即时 FG-SBIR 的局部-全局表征学习","authors":"Dawei Dai;Yingge Liu;Yutang Li;Shiyu Fu;Shuyin Xia;Guoyin Wang","doi":"10.1109/TBDATA.2024.3356393","DOIUrl":null,"url":null,"abstract":"On-the-fly Fine-grained sketch-based image retrieval (On-the-fly FG-SBIR) framework aim to break the barriers that sketch drawing requires excellent skills and is time-consuming. Considering such problems, a partial sketch with fewer strokes contains only the little local information, and the drawing process may show great difference among users, resulting in poor performance at the early retrieval. In this study, we developed a local-global representation learning (LGRL) method, in which we learn the representations for both the local and global regions of the partial sketch and its target photos. Specifically, we first designed a triplet network to learn the joint embedding space shared between the local and global regions of the entire sketch and its corresponding region of the photo. Then, we divided each partial sketch in the sketch-drawing episode into several local regions; Another learnable module following the triplet network was designed to learn the representations for the local regions of the partial sketch. Finally, by combining both the local and global regions of the sketches and photos, the final distance was determined. In the experiments, our method outperformed state-of-the-art baseline methods in terms of early retrieval efficiency on two publicly sketch-retrieval datasets and the practice test.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 4","pages":"543-555"},"PeriodicalIF":7.5000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LGRL: Local-Global Representation Learning for On-the-Fly FG-SBIR\",\"authors\":\"Dawei Dai;Yingge Liu;Yutang Li;Shiyu Fu;Shuyin Xia;Guoyin Wang\",\"doi\":\"10.1109/TBDATA.2024.3356393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-the-fly Fine-grained sketch-based image retrieval (On-the-fly FG-SBIR) framework aim to break the barriers that sketch drawing requires excellent skills and is time-consuming. Considering such problems, a partial sketch with fewer strokes contains only the little local information, and the drawing process may show great difference among users, resulting in poor performance at the early retrieval. In this study, we developed a local-global representation learning (LGRL) method, in which we learn the representations for both the local and global regions of the partial sketch and its target photos. Specifically, we first designed a triplet network to learn the joint embedding space shared between the local and global regions of the entire sketch and its corresponding region of the photo. Then, we divided each partial sketch in the sketch-drawing episode into several local regions; Another learnable module following the triplet network was designed to learn the representations for the local regions of the partial sketch. Finally, by combining both the local and global regions of the sketches and photos, the final distance was determined. In the experiments, our method outperformed state-of-the-art baseline methods in terms of early retrieval efficiency on two publicly sketch-retrieval datasets and the practice test.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 4\",\"pages\":\"543-555\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10409584/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10409584/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LGRL: Local-Global Representation Learning for On-the-Fly FG-SBIR
On-the-fly Fine-grained sketch-based image retrieval (On-the-fly FG-SBIR) framework aim to break the barriers that sketch drawing requires excellent skills and is time-consuming. Considering such problems, a partial sketch with fewer strokes contains only the little local information, and the drawing process may show great difference among users, resulting in poor performance at the early retrieval. In this study, we developed a local-global representation learning (LGRL) method, in which we learn the representations for both the local and global regions of the partial sketch and its target photos. Specifically, we first designed a triplet network to learn the joint embedding space shared between the local and global regions of the entire sketch and its corresponding region of the photo. Then, we divided each partial sketch in the sketch-drawing episode into several local regions; Another learnable module following the triplet network was designed to learn the representations for the local regions of the partial sketch. Finally, by combining both the local and global regions of the sketches and photos, the final distance was determined. In the experiments, our method outperformed state-of-the-art baseline methods in terms of early retrieval efficiency on two publicly sketch-retrieval datasets and the practice test.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.