{"title":"利用多粒度知识融合和决策的 \"少量学习\"(Few-Shot Learning with Multi-Granularity Knowledge Fusion and Decision-Making","authors":"Yuling Su;Hong Zhao;Yifeng Zheng;Yu Wang","doi":"10.1109/TBDATA.2024.3350542","DOIUrl":null,"url":null,"abstract":"Few-shot learning (FSL) is a challenging task in classifying new classes from few labelled examples. Many existing models embed class structural knowledge as prior knowledge to enhance FSL against data scarcity. However, they fall short of connecting the class structural knowledge with the limited visual information which plays a decisive role in FSL model performance. In this paper, we propose a unified FSL framework with multi-granularity knowledge fusion and decision-making (MGKFD) to overcome the limitation. We aim to simultaneously explore the visual information and structural knowledge, working in a mutual way to enhance FSL. On the one hand, we strongly connect global and local visual information with multi-granularity class knowledge to explore intra-image and inter-class relationships, generating specific multi-granularity class representations with limited images. On the other hand, a weight fusion strategy is introduced to integrate multi-granularity knowledge and visual information to make the classification decision of FSL. It enables models to learn more effectively from limited labelled examples and allows generalization to new classes. Moreover, considering varying erroneous predictions, a hierarchical loss is established by structural knowledge to minimize the classification loss, where greater degree of misclassification is penalized more. Experimental results on three benchmark datasets show the advantages of MGKFD over several advanced models.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 4","pages":"486-497"},"PeriodicalIF":7.5000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-Shot Learning With Multi-Granularity Knowledge Fusion and Decision-Making\",\"authors\":\"Yuling Su;Hong Zhao;Yifeng Zheng;Yu Wang\",\"doi\":\"10.1109/TBDATA.2024.3350542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot learning (FSL) is a challenging task in classifying new classes from few labelled examples. Many existing models embed class structural knowledge as prior knowledge to enhance FSL against data scarcity. However, they fall short of connecting the class structural knowledge with the limited visual information which plays a decisive role in FSL model performance. In this paper, we propose a unified FSL framework with multi-granularity knowledge fusion and decision-making (MGKFD) to overcome the limitation. We aim to simultaneously explore the visual information and structural knowledge, working in a mutual way to enhance FSL. On the one hand, we strongly connect global and local visual information with multi-granularity class knowledge to explore intra-image and inter-class relationships, generating specific multi-granularity class representations with limited images. On the other hand, a weight fusion strategy is introduced to integrate multi-granularity knowledge and visual information to make the classification decision of FSL. It enables models to learn more effectively from limited labelled examples and allows generalization to new classes. Moreover, considering varying erroneous predictions, a hierarchical loss is established by structural knowledge to minimize the classification loss, where greater degree of misclassification is penalized more. Experimental results on three benchmark datasets show the advantages of MGKFD over several advanced models.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 4\",\"pages\":\"486-497\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10382622/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10382622/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Few-Shot Learning With Multi-Granularity Knowledge Fusion and Decision-Making
Few-shot learning (FSL) is a challenging task in classifying new classes from few labelled examples. Many existing models embed class structural knowledge as prior knowledge to enhance FSL against data scarcity. However, they fall short of connecting the class structural knowledge with the limited visual information which plays a decisive role in FSL model performance. In this paper, we propose a unified FSL framework with multi-granularity knowledge fusion and decision-making (MGKFD) to overcome the limitation. We aim to simultaneously explore the visual information and structural knowledge, working in a mutual way to enhance FSL. On the one hand, we strongly connect global and local visual information with multi-granularity class knowledge to explore intra-image and inter-class relationships, generating specific multi-granularity class representations with limited images. On the other hand, a weight fusion strategy is introduced to integrate multi-granularity knowledge and visual information to make the classification decision of FSL. It enables models to learn more effectively from limited labelled examples and allows generalization to new classes. Moreover, considering varying erroneous predictions, a hierarchical loss is established by structural knowledge to minimize the classification loss, where greater degree of misclassification is penalized more. Experimental results on three benchmark datasets show the advantages of MGKFD over several advanced models.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.