锌通过上调 A20 可减轻单克隆盐碱诱发的大鼠肺动脉高压。

IF 4.9 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of molecular and cellular cardiology Pub Date : 2024-07-14 DOI:10.1016/j.yjmcc.2024.07.003
Weixiao Chen , Ai Chen , Guili Lian , Yan Yan , Junping Liu , Jingying Wu , Gufeng Gao , Liangdi Xie
{"title":"锌通过上调 A20 可减轻单克隆盐碱诱发的大鼠肺动脉高压。","authors":"Weixiao Chen ,&nbsp;Ai Chen ,&nbsp;Guili Lian ,&nbsp;Yan Yan ,&nbsp;Junping Liu ,&nbsp;Jingying Wu ,&nbsp;Gufeng Gao ,&nbsp;Liangdi Xie","doi":"10.1016/j.yjmcc.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (<em>e.g.</em> COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. <em>In vitro</em>, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 24-35"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022282824001111/pdfft?md5=e61a374a3addf73b732b912c926ce55c&pid=1-s2.0-S0022282824001111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Zinc attenuates monocrotaline-induced pulmonary hypertension in rats through upregulation of A20\",\"authors\":\"Weixiao Chen ,&nbsp;Ai Chen ,&nbsp;Guili Lian ,&nbsp;Yan Yan ,&nbsp;Junping Liu ,&nbsp;Jingying Wu ,&nbsp;Gufeng Gao ,&nbsp;Liangdi Xie\",\"doi\":\"10.1016/j.yjmcc.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (<em>e.g.</em> COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. <em>In vitro</em>, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.</p></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"195 \",\"pages\":\"Pages 24-35\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022282824001111/pdfft?md5=e61a374a3addf73b732b912c926ce55c&pid=1-s2.0-S0022282824001111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282824001111\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282824001111","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

肺动脉高压(PH)的特点是肺动脉平滑肌细胞(PASMCs)过度增殖和迁移,其中由 NF-κB 通路激活引起的炎症信号发挥了重要作用。A20 是 NF-κB 通路的重要负调控因子,锌能促进 A20 的表达,并通过抑制炎症信号传导对多种疾病(如 COVID19)产生保护作用。A20和细胞内锌信号转导在PH中的作用已被探讨,但细胞外锌信号转导还不十分清楚,锌是否对PH有保护作用也仍未确定。我们利用电感耦合等离子体质谱法(ICP-MS)研究了单克洛林(MCT)诱导的PH进展过程中微量元素的变化,发现随着PH的发生,血清锌浓度降低,同时铜、铬和镁等其他三种元素也出现异常。腹腔注射 5 毫克/千克氯化锌可部分纠正这种异常,并抑制 PH 的发展。补锌可诱导肺组织中 A20 的表达并减轻炎症反应。在体外,补锌可时间依赖性地上调 PASMCs 中 A20 的表达,从而纠正缺氧导致的细胞过度增殖和迁移。利用基于基因编码-FRET的锌探针,我们发现锌离子的这些作用不是通过进入细胞实现的,而很可能是通过激活细胞表面锌受体(ZnR/GPR39)实现的。这些结果首次证明了补锌治疗 PH 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zinc attenuates monocrotaline-induced pulmonary hypertension in rats through upregulation of A20

Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (e.g. COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. In vitro, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
171
审稿时长
42 days
期刊介绍: The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.
期刊最新文献
Editorial Board PERM1 regulates mitochondrial energetics through O-GlcNAcylation in the heart Corrigendum to "PGE2 protects against heart failure through inhibiting TGF-β1 synthesis in cardiomyocytes and crosstalk between TGF-β1 and GRK2" [Journal of Molecular and Cellular Cardiology. 172(2022) 63-77]. Retraction notice to “The novel antibody fusion protein rhNRG1-HER3i promotes heart regeneration by enhancing NRG1-ERBB4 signaling pathway” [Journal of Molecular and Cellular Cardiology 187 (2023) 26–37] Exercise training attenuates cardiac dysfunction induced by excessive sympathetic activation through an AMPK-KLF4-FMO2 axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1