将领域知识与机器学习相结合:公共部门视角

IF 8.7 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Strategic Information Systems Pub Date : 2024-07-13 DOI:10.1016/j.jsis.2024.101848
Leif Sundberg, Jonny Holmström
{"title":"将领域知识与机器学习相结合:公共部门视角","authors":"Leif Sundberg,&nbsp;Jonny Holmström","doi":"10.1016/j.jsis.2024.101848","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning (ML) offers widely-recognized, but complex, opportunities for both public and private sector organizations to generate value from data. A key requirement is that organizations must find ways to develop new knowledge by merging crucial ‘domain knowledge’ of experts in relevant fields with ‘machine knowledge’, i.e., data that can be used to inform predictive models. In this paper, we argue that understanding the process of generating such knowledge is essential to strategically develop ML. In efforts to contribute to such understanding, we examine the generation of new knowledge from domain knowledge through ML via an exploratory study of two cases in the Swedish public sector. The findings reveal the roles of three mechanisms – dubbed consolidation, algorithmic mediation, and naturalization – in tying domain knowledge to machine knowledge. The study contributes a theory of knowledge production related to organizational use of ML, with important implications for its strategic governance, particularly in the public sector.</p></div>","PeriodicalId":50037,"journal":{"name":"Journal of Strategic Information Systems","volume":"33 3","pages":"Article 101848"},"PeriodicalIF":8.7000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0963868724000301/pdfft?md5=4e0ed2aa493bfb9ab34d2262a8d94cbf&pid=1-s2.0-S0963868724000301-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fusing domain knowledge with machine learning: A public sector perspective\",\"authors\":\"Leif Sundberg,&nbsp;Jonny Holmström\",\"doi\":\"10.1016/j.jsis.2024.101848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning (ML) offers widely-recognized, but complex, opportunities for both public and private sector organizations to generate value from data. A key requirement is that organizations must find ways to develop new knowledge by merging crucial ‘domain knowledge’ of experts in relevant fields with ‘machine knowledge’, i.e., data that can be used to inform predictive models. In this paper, we argue that understanding the process of generating such knowledge is essential to strategically develop ML. In efforts to contribute to such understanding, we examine the generation of new knowledge from domain knowledge through ML via an exploratory study of two cases in the Swedish public sector. The findings reveal the roles of three mechanisms – dubbed consolidation, algorithmic mediation, and naturalization – in tying domain knowledge to machine knowledge. The study contributes a theory of knowledge production related to organizational use of ML, with important implications for its strategic governance, particularly in the public sector.</p></div>\",\"PeriodicalId\":50037,\"journal\":{\"name\":\"Journal of Strategic Information Systems\",\"volume\":\"33 3\",\"pages\":\"Article 101848\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0963868724000301/pdfft?md5=4e0ed2aa493bfb9ab34d2262a8d94cbf&pid=1-s2.0-S0963868724000301-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strategic Information Systems\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963868724000301\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strategic Information Systems","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963868724000301","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)为公共和私营部门组织从数据中创造价值提供了广受认可但又复杂的机会。一个关键要求是,组织必须找到方法,将相关领域专家的关键 "领域知识 "与 "机器知识"(即可用于为预测模型提供信息的数据)融合起来,从而开发出新的知识。本文认为,了解这些知识的生成过程对于战略性地开发 ML 至关重要。为了促进这种理解,我们通过对瑞典公共部门的两个案例进行探索性研究,考察了通过 ML 从领域知识中生成新知识的过程。研究结果揭示了三种机制在将领域知识与机器知识联系在一起时所发挥的作用,这三种机制被称为整合、算法调解和归化。该研究提出了与组织使用 ML 有关的知识生产理论,对 ML 的战略管理具有重要意义,尤其是在公共部门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusing domain knowledge with machine learning: A public sector perspective

Machine learning (ML) offers widely-recognized, but complex, opportunities for both public and private sector organizations to generate value from data. A key requirement is that organizations must find ways to develop new knowledge by merging crucial ‘domain knowledge’ of experts in relevant fields with ‘machine knowledge’, i.e., data that can be used to inform predictive models. In this paper, we argue that understanding the process of generating such knowledge is essential to strategically develop ML. In efforts to contribute to such understanding, we examine the generation of new knowledge from domain knowledge through ML via an exploratory study of two cases in the Swedish public sector. The findings reveal the roles of three mechanisms – dubbed consolidation, algorithmic mediation, and naturalization – in tying domain knowledge to machine knowledge. The study contributes a theory of knowledge production related to organizational use of ML, with important implications for its strategic governance, particularly in the public sector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strategic Information Systems
Journal of Strategic Information Systems 工程技术-计算机:信息系统
CiteScore
17.40
自引率
4.30%
发文量
19
审稿时长
>12 weeks
期刊介绍: The Journal of Strategic Information Systems focuses on the strategic management, business and organizational issues associated with the introduction and utilization of information systems, and considers these issues in a global context. The emphasis is on the incorporation of IT into organizations'' strategic thinking, strategy alignment, organizational arrangements and management of change issues.
期刊最新文献
Do CEOs matter? Divergent impact of CEO power on digital and non-digital innovation A knowledge-centric model for government-orchestrated digital transformation among the microbusiness sector A process model for design-oriented machine learning research in information systems Is AI a strategic IS? Reflections and opportunities for research A socio-cognitive perspective of knowledge integration in digital innovation networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1