g-C3N4/CuS 的带隙工程及其在太阳能电池中的应用

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-07-08 DOI:10.1016/j.chphi.2024.100684
Joshua Fernandes , Sujith Kalluri , Mohammed Alsuwaidi , Vishnuvarthanan Mayakrishnan , Chandra Mohan , Asha Anish Madhavan
{"title":"g-C3N4/CuS 的带隙工程及其在太阳能电池中的应用","authors":"Joshua Fernandes ,&nbsp;Sujith Kalluri ,&nbsp;Mohammed Alsuwaidi ,&nbsp;Vishnuvarthanan Mayakrishnan ,&nbsp;Chandra Mohan ,&nbsp;Asha Anish Madhavan","doi":"10.1016/j.chphi.2024.100684","DOIUrl":null,"url":null,"abstract":"<div><p>Interfacial solar steam generation is considered as economical and more effective implementation of Solar steam generation (SSG) where solar energy is concentrated at the liquid surface via the utilization of heat localization materials (HLM). Herein we report the fabrication of an HLM constituted of a nanocomposite absorber of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and covellite copper sulfide (CuS) supported on a mixed cellulose ester membrane, with a substrate of air laid paper-wrapped polystyrene foam. This structure allowed for strong broad-spectrum absorbance, increased hydrophilic character and minimal thermal losses. The HLM system absorbed 98% of the material and had an evaporation rate of 2.58 kgs per square meter per hour. This is twice the evaporation rate of water tested under the same conditions. Moreover, as fabricated HLM was also incorporated in a solar still in order to assess its practical performance in solar distillation. Initial studies proved that HLM modified solar still was more effective than conventional solar stills.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002287/pdfft?md5=5601f0040b001db2240df2f2249f4137&pid=1-s2.0-S2667022424002287-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Band gap engineering of g-C3N4/CuS and its application in Solar Still\",\"authors\":\"Joshua Fernandes ,&nbsp;Sujith Kalluri ,&nbsp;Mohammed Alsuwaidi ,&nbsp;Vishnuvarthanan Mayakrishnan ,&nbsp;Chandra Mohan ,&nbsp;Asha Anish Madhavan\",\"doi\":\"10.1016/j.chphi.2024.100684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interfacial solar steam generation is considered as economical and more effective implementation of Solar steam generation (SSG) where solar energy is concentrated at the liquid surface via the utilization of heat localization materials (HLM). Herein we report the fabrication of an HLM constituted of a nanocomposite absorber of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and covellite copper sulfide (CuS) supported on a mixed cellulose ester membrane, with a substrate of air laid paper-wrapped polystyrene foam. This structure allowed for strong broad-spectrum absorbance, increased hydrophilic character and minimal thermal losses. The HLM system absorbed 98% of the material and had an evaporation rate of 2.58 kgs per square meter per hour. This is twice the evaporation rate of water tested under the same conditions. Moreover, as fabricated HLM was also incorporated in a solar still in order to assess its practical performance in solar distillation. Initial studies proved that HLM modified solar still was more effective than conventional solar stills.</p></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002287/pdfft?md5=5601f0040b001db2240df2f2249f4137&pid=1-s2.0-S2667022424002287-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

界面太阳能蒸汽发电被认为是太阳能蒸汽发电(SSG)经济、有效的实现方式,通过利用热定位材料(HLM)将太阳能集中在液体表面。在此,我们报告了由氮化石墨(g-C3N4)和沸石硫化铜(CuS)纳米复合吸收体构成的热定位材料的制造过程,该吸收体支撑在混合纤维素酯膜上,基底为气垫纸包裹的聚苯乙烯泡沫。这种结构具有很强的广谱吸收能力,亲水性更强,热损失最小。HLM 系统吸收了 98% 的材料,蒸发率为每平方米每小时 2.58 千克。这是相同条件下水测试蒸发率的两倍。此外,为了评估 HLM 在太阳能蒸馏中的实用性能,还将制造的 HLM 安装到太阳能蒸馏器中。初步研究证明,改进型 HLM 太阳能蒸馏器比传统太阳能蒸馏器更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Band gap engineering of g-C3N4/CuS and its application in Solar Still

Interfacial solar steam generation is considered as economical and more effective implementation of Solar steam generation (SSG) where solar energy is concentrated at the liquid surface via the utilization of heat localization materials (HLM). Herein we report the fabrication of an HLM constituted of a nanocomposite absorber of graphitic carbon nitride (g-C3N4) and covellite copper sulfide (CuS) supported on a mixed cellulose ester membrane, with a substrate of air laid paper-wrapped polystyrene foam. This structure allowed for strong broad-spectrum absorbance, increased hydrophilic character and minimal thermal losses. The HLM system absorbed 98% of the material and had an evaporation rate of 2.58 kgs per square meter per hour. This is twice the evaporation rate of water tested under the same conditions. Moreover, as fabricated HLM was also incorporated in a solar still in order to assess its practical performance in solar distillation. Initial studies proved that HLM modified solar still was more effective than conventional solar stills.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1