目前对电化学应变显微镜在纳米尺度上观察离子行为的理解

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Electrochemistry Pub Date : 2024-06-26 DOI:10.1016/j.coelec.2024.101562
Florian Hausen , Nina Balke
{"title":"目前对电化学应变显微镜在纳米尺度上观察离子行为的理解","authors":"Florian Hausen ,&nbsp;Nina Balke","doi":"10.1016/j.coelec.2024.101562","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical Strain Microscopy (ESM) is a technique based on Atomic Force Microscopy and provides information about local ionic processes through electro-chemo-mechanical coupling. It is employed foremost in studying battery materials, from cathodes, and anodes to solid-state electrolytes. Based on this overlap we aim to connect the electrochemistry community further with those employing ESM, by providing the current understanding of ESM, starting with a thorough introduction to the technique. In the second section, typical applications and challenges identified in recent years are reviewed while in the third chapter new approaches to overcome these issues are presented. This includes the identification of various contributions to the ESM signal, the integration of ESM as part of a multi-modal characterization approach, and importantly, how to link local ESM results to the overall cell performance in batteries. Lastly, upcoming trends and new aspects are discussed, including the application of <em>in-situ</em> ESM directly in an electrochemical environment.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101562"},"PeriodicalIF":7.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001236/pdfft?md5=4a585c161667b736a2772c218be24df7&pid=1-s2.0-S2451910324001236-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Current understanding of electrochemical strain microscopy to visualize ion behavior on the nanoscale\",\"authors\":\"Florian Hausen ,&nbsp;Nina Balke\",\"doi\":\"10.1016/j.coelec.2024.101562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical Strain Microscopy (ESM) is a technique based on Atomic Force Microscopy and provides information about local ionic processes through electro-chemo-mechanical coupling. It is employed foremost in studying battery materials, from cathodes, and anodes to solid-state electrolytes. Based on this overlap we aim to connect the electrochemistry community further with those employing ESM, by providing the current understanding of ESM, starting with a thorough introduction to the technique. In the second section, typical applications and challenges identified in recent years are reviewed while in the third chapter new approaches to overcome these issues are presented. This includes the identification of various contributions to the ESM signal, the integration of ESM as part of a multi-modal characterization approach, and importantly, how to link local ESM results to the overall cell performance in batteries. Lastly, upcoming trends and new aspects are discussed, including the application of <em>in-situ</em> ESM directly in an electrochemical environment.</p></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"47 \",\"pages\":\"Article 101562\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2451910324001236/pdfft?md5=4a585c161667b736a2772c218be24df7&pid=1-s2.0-S2451910324001236-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910324001236\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001236","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学应变显微镜(ESM)是一种基于原子力显微镜的技术,通过电化学机械耦合提供有关局部离子过程的信息。它主要用于研究电池材料,从阴极、阳极到固态电解质。在这种重叠的基础上,我们旨在通过提供目前对 ESM 的理解,从全面介绍该技术开始,进一步将电化学界与使用 ESM 的人士联系起来。第二部分回顾了近年来发现的典型应用和挑战,第三章介绍了克服这些问题的新方法。这包括识别对 ESM 信号的各种贡献、将 ESM 整合为多模式表征方法的一部分,以及重要的是,如何将局部 ESM 结果与电池的整体性能联系起来。最后,还讨论了即将到来的趋势和新方面,包括直接在电化学环境中应用原位 ESM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current understanding of electrochemical strain microscopy to visualize ion behavior on the nanoscale

Electrochemical Strain Microscopy (ESM) is a technique based on Atomic Force Microscopy and provides information about local ionic processes through electro-chemo-mechanical coupling. It is employed foremost in studying battery materials, from cathodes, and anodes to solid-state electrolytes. Based on this overlap we aim to connect the electrochemistry community further with those employing ESM, by providing the current understanding of ESM, starting with a thorough introduction to the technique. In the second section, typical applications and challenges identified in recent years are reviewed while in the third chapter new approaches to overcome these issues are presented. This includes the identification of various contributions to the ESM signal, the integration of ESM as part of a multi-modal characterization approach, and importantly, how to link local ESM results to the overall cell performance in batteries. Lastly, upcoming trends and new aspects are discussed, including the application of in-situ ESM directly in an electrochemical environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
期刊最新文献
Determination of the reaction orders for electrode reactions Electrochemical systems for renewable energy conversion and storage: Focus on flow batteries and regenerative fuel cells Advancements in ordered membrane electrode assembly (MEA) for water electrolysis Artificial protective layers of zinc metal anodes for reversible aqueous zinc ion batteries The chemical effect of a selenium atom on the catalytic site of precious metals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1