Xianbiao Hou , Chen Yu , Tengjia Ni , Shucong Zhang, Jian Zhou, Shuixing Dai, Lei Chu, Minghua Huang
{"title":"构建非晶/晶态 NiFe-MOF@NiS 异质结催化剂,在大电流密度下增强水/海水氧化能力","authors":"Xianbiao Hou , Chen Yu , Tengjia Ni , Shucong Zhang, Jian Zhou, Shuixing Dai, Lei Chu, Minghua Huang","doi":"10.1016/S1872-2067(24)60030-6","DOIUrl":null,"url":null,"abstract":"<div><p>Developing metal-organic frameworks (MOF) based catalysts with high activity and chlorine corrosion resistance is of paramount importance for seawater oxidation at large current density. Herein, we report a heterogeneous structure coupling NiFe-MOF nanoparticles with NiS nanosheets onto Ni foam (denoted as the NiFe-MOF@NiS/NF) <em>via</em> the mild strategy involving sulfur-modified corrosion and electrodeposition treatment. The constructed amorphous/crystalline interfaces could not only facilitate the adequate infiltration of electrolyte and release of O<sub>2</sub> bubbles at large current densities, but also significantly improve the charge transfer from NiFe-MOF to NiS and the adsorption/desorption capacity of oxygen intermediates. Intriguingly, during oxygen evolution reaction process, the sulfate film formed by the self-reconstruction could remarkably inhibit the adsorption of Cl<sup>–</sup> ions on the catalyst surface in the seawater electrolytes. Benefiting from the robust corrosion resistance, unique amorphous/crystalline interfaces, and the charge redistribution, the well-designed NiFe-MOF@NiS/NF exhibits the low overpotential of 346 and 355 mV under a high current density of 500 mA cm<sup>−2</sup> in alkaline water and seawater electrolytes, respectively. More importantly, the as-fabricated NiFe-MOF@NiS/NF demonstrates prolonged stability and durability, lasting over 600 h at a current density of 100 mA cm<sup>−2</sup> in both electrolytes. This study enriches the understanding of electronic structure modulation and chlorine corrosion resistance in seawater, providing broad prospects for designing advanced MOF-based catalysts.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing amorphous/crystalline NiFe-MOF@NiS heterojunction catalysts for enhanced water/seawater oxidation at large current density\",\"authors\":\"Xianbiao Hou , Chen Yu , Tengjia Ni , Shucong Zhang, Jian Zhou, Shuixing Dai, Lei Chu, Minghua Huang\",\"doi\":\"10.1016/S1872-2067(24)60030-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing metal-organic frameworks (MOF) based catalysts with high activity and chlorine corrosion resistance is of paramount importance for seawater oxidation at large current density. Herein, we report a heterogeneous structure coupling NiFe-MOF nanoparticles with NiS nanosheets onto Ni foam (denoted as the NiFe-MOF@NiS/NF) <em>via</em> the mild strategy involving sulfur-modified corrosion and electrodeposition treatment. The constructed amorphous/crystalline interfaces could not only facilitate the adequate infiltration of electrolyte and release of O<sub>2</sub> bubbles at large current densities, but also significantly improve the charge transfer from NiFe-MOF to NiS and the adsorption/desorption capacity of oxygen intermediates. Intriguingly, during oxygen evolution reaction process, the sulfate film formed by the self-reconstruction could remarkably inhibit the adsorption of Cl<sup>–</sup> ions on the catalyst surface in the seawater electrolytes. Benefiting from the robust corrosion resistance, unique amorphous/crystalline interfaces, and the charge redistribution, the well-designed NiFe-MOF@NiS/NF exhibits the low overpotential of 346 and 355 mV under a high current density of 500 mA cm<sup>−2</sup> in alkaline water and seawater electrolytes, respectively. More importantly, the as-fabricated NiFe-MOF@NiS/NF demonstrates prolonged stability and durability, lasting over 600 h at a current density of 100 mA cm<sup>−2</sup> in both electrolytes. This study enriches the understanding of electronic structure modulation and chlorine corrosion resistance in seawater, providing broad prospects for designing advanced MOF-based catalysts.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600306\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Constructing amorphous/crystalline NiFe-MOF@NiS heterojunction catalysts for enhanced water/seawater oxidation at large current density
Developing metal-organic frameworks (MOF) based catalysts with high activity and chlorine corrosion resistance is of paramount importance for seawater oxidation at large current density. Herein, we report a heterogeneous structure coupling NiFe-MOF nanoparticles with NiS nanosheets onto Ni foam (denoted as the NiFe-MOF@NiS/NF) via the mild strategy involving sulfur-modified corrosion and electrodeposition treatment. The constructed amorphous/crystalline interfaces could not only facilitate the adequate infiltration of electrolyte and release of O2 bubbles at large current densities, but also significantly improve the charge transfer from NiFe-MOF to NiS and the adsorption/desorption capacity of oxygen intermediates. Intriguingly, during oxygen evolution reaction process, the sulfate film formed by the self-reconstruction could remarkably inhibit the adsorption of Cl– ions on the catalyst surface in the seawater electrolytes. Benefiting from the robust corrosion resistance, unique amorphous/crystalline interfaces, and the charge redistribution, the well-designed NiFe-MOF@NiS/NF exhibits the low overpotential of 346 and 355 mV under a high current density of 500 mA cm−2 in alkaline water and seawater electrolytes, respectively. More importantly, the as-fabricated NiFe-MOF@NiS/NF demonstrates prolonged stability and durability, lasting over 600 h at a current density of 100 mA cm−2 in both electrolytes. This study enriches the understanding of electronic structure modulation and chlorine corrosion resistance in seawater, providing broad prospects for designing advanced MOF-based catalysts.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.