构建非晶/晶态 NiFe-MOF@NiS 异质结催化剂,在大电流密度下增强水/海水氧化能力

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-06-01 DOI:10.1016/S1872-2067(24)60030-6
Xianbiao Hou , Chen Yu , Tengjia Ni , Shucong Zhang, Jian Zhou, Shuixing Dai, Lei Chu, Minghua Huang
{"title":"构建非晶/晶态 NiFe-MOF@NiS 异质结催化剂,在大电流密度下增强水/海水氧化能力","authors":"Xianbiao Hou ,&nbsp;Chen Yu ,&nbsp;Tengjia Ni ,&nbsp;Shucong Zhang,&nbsp;Jian Zhou,&nbsp;Shuixing Dai,&nbsp;Lei Chu,&nbsp;Minghua Huang","doi":"10.1016/S1872-2067(24)60030-6","DOIUrl":null,"url":null,"abstract":"<div><p>Developing metal-organic frameworks (MOF) based catalysts with high activity and chlorine corrosion resistance is of paramount importance for seawater oxidation at large current density. Herein, we report a heterogeneous structure coupling NiFe-MOF nanoparticles with NiS nanosheets onto Ni foam (denoted as the NiFe-MOF@NiS/NF) <em>via</em> the mild strategy involving sulfur-modified corrosion and electrodeposition treatment. The constructed amorphous/crystalline interfaces could not only facilitate the adequate infiltration of electrolyte and release of O<sub>2</sub> bubbles at large current densities, but also significantly improve the charge transfer from NiFe-MOF to NiS and the adsorption/desorption capacity of oxygen intermediates. Intriguingly, during oxygen evolution reaction process, the sulfate film formed by the self-reconstruction could remarkably inhibit the adsorption of Cl<sup>–</sup> ions on the catalyst surface in the seawater electrolytes. Benefiting from the robust corrosion resistance, unique amorphous/crystalline interfaces, and the charge redistribution, the well-designed NiFe-MOF@NiS/NF exhibits the low overpotential of 346 and 355 mV under a high current density of 500 mA cm<sup>−2</sup> in alkaline water and seawater electrolytes, respectively. More importantly, the as-fabricated NiFe-MOF@NiS/NF demonstrates prolonged stability and durability, lasting over 600 h at a current density of 100 mA cm<sup>−2</sup> in both electrolytes. This study enriches the understanding of electronic structure modulation and chlorine corrosion resistance in seawater, providing broad prospects for designing advanced MOF-based catalysts.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing amorphous/crystalline NiFe-MOF@NiS heterojunction catalysts for enhanced water/seawater oxidation at large current density\",\"authors\":\"Xianbiao Hou ,&nbsp;Chen Yu ,&nbsp;Tengjia Ni ,&nbsp;Shucong Zhang,&nbsp;Jian Zhou,&nbsp;Shuixing Dai,&nbsp;Lei Chu,&nbsp;Minghua Huang\",\"doi\":\"10.1016/S1872-2067(24)60030-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing metal-organic frameworks (MOF) based catalysts with high activity and chlorine corrosion resistance is of paramount importance for seawater oxidation at large current density. Herein, we report a heterogeneous structure coupling NiFe-MOF nanoparticles with NiS nanosheets onto Ni foam (denoted as the NiFe-MOF@NiS/NF) <em>via</em> the mild strategy involving sulfur-modified corrosion and electrodeposition treatment. The constructed amorphous/crystalline interfaces could not only facilitate the adequate infiltration of electrolyte and release of O<sub>2</sub> bubbles at large current densities, but also significantly improve the charge transfer from NiFe-MOF to NiS and the adsorption/desorption capacity of oxygen intermediates. Intriguingly, during oxygen evolution reaction process, the sulfate film formed by the self-reconstruction could remarkably inhibit the adsorption of Cl<sup>–</sup> ions on the catalyst surface in the seawater electrolytes. Benefiting from the robust corrosion resistance, unique amorphous/crystalline interfaces, and the charge redistribution, the well-designed NiFe-MOF@NiS/NF exhibits the low overpotential of 346 and 355 mV under a high current density of 500 mA cm<sup>−2</sup> in alkaline water and seawater electrolytes, respectively. More importantly, the as-fabricated NiFe-MOF@NiS/NF demonstrates prolonged stability and durability, lasting over 600 h at a current density of 100 mA cm<sup>−2</sup> in both electrolytes. This study enriches the understanding of electronic structure modulation and chlorine corrosion resistance in seawater, providing broad prospects for designing advanced MOF-based catalysts.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600306\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

开发具有高活性和抗氯腐蚀性的基于金属有机框架(MOF)的催化剂对于大电流密度下的海水氧化至关重要。在此,我们报告了一种将 NiFe-MOF 纳米颗粒与 NiS 纳米片材耦合到镍泡沫上的异质结构(称为 NiFe-MOF@NiS/NF),该结构采用温和的策略,包括硫改性腐蚀和电沉积处理。所构建的非晶/晶体界面不仅能在大电流密度下促进电解质的充分渗透和氧气气泡的释放,还能显著改善从 NiFe-MOF 到 NiS 的电荷转移以及氧中间产物的吸附/解吸能力。耐人寻味的是,在氧进化反应过程中,自重构形成的硫酸盐膜能显著抑制海水电解质中催化剂表面对 Cl- 离子的吸附。得益于强大的耐腐蚀性、独特的非晶/晶体界面和电荷再分布特性,精心设计的 NiFe-MOF@NiS/NF 在碱性水和海水电解质中,在 500 mA cm-2 的高电流密度下分别表现出 346 mV 和 355 mV 的低过电位。更重要的是,制备的 NiFe-MOF@NiS/NF 具有长期的稳定性和耐久性,在两种电解质中的电流密度均为 100 mA cm-2 时,可持续 600 小时以上。这项研究丰富了人们对海水中电子结构调制和耐氯腐蚀性的认识,为设计先进的 MOF 基催化剂提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing amorphous/crystalline NiFe-MOF@NiS heterojunction catalysts for enhanced water/seawater oxidation at large current density

Developing metal-organic frameworks (MOF) based catalysts with high activity and chlorine corrosion resistance is of paramount importance for seawater oxidation at large current density. Herein, we report a heterogeneous structure coupling NiFe-MOF nanoparticles with NiS nanosheets onto Ni foam (denoted as the NiFe-MOF@NiS/NF) via the mild strategy involving sulfur-modified corrosion and electrodeposition treatment. The constructed amorphous/crystalline interfaces could not only facilitate the adequate infiltration of electrolyte and release of O2 bubbles at large current densities, but also significantly improve the charge transfer from NiFe-MOF to NiS and the adsorption/desorption capacity of oxygen intermediates. Intriguingly, during oxygen evolution reaction process, the sulfate film formed by the self-reconstruction could remarkably inhibit the adsorption of Cl ions on the catalyst surface in the seawater electrolytes. Benefiting from the robust corrosion resistance, unique amorphous/crystalline interfaces, and the charge redistribution, the well-designed NiFe-MOF@NiS/NF exhibits the low overpotential of 346 and 355 mV under a high current density of 500 mA cm−2 in alkaline water and seawater electrolytes, respectively. More importantly, the as-fabricated NiFe-MOF@NiS/NF demonstrates prolonged stability and durability, lasting over 600 h at a current density of 100 mA cm−2 in both electrolytes. This study enriches the understanding of electronic structure modulation and chlorine corrosion resistance in seawater, providing broad prospects for designing advanced MOF-based catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Mechanism study on the influence of surface properties on the synthesis of dimethyl carbonate from CO2 and methanol over ceria catalysts Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO2 reduction and aryl alcohol oxidation Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction Activating d10 electronic configuration to regulate p-band centers as efficient active sites for solar energy conversion into H2 by surface atomic arrangement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1