Ureña-Vacas Isabel , Aznar de la Riera M. Belén , Serrano Dolores R , González-Burgos Elena
{"title":"神经药理学的新领域:天然产品穿越血脑屏障研究的最新进展","authors":"Ureña-Vacas Isabel , Aznar de la Riera M. Belén , Serrano Dolores R , González-Burgos Elena","doi":"10.1016/j.crbiot.2024.100235","DOIUrl":null,"url":null,"abstract":"<div><p>Neuropharmacology faces challenges due to the intricate nervous system, diverse neurological disorders, and existence of the blood–brain barrier (BBB), which hinder the development of effective treatments. Although the primary function of the BBB is to expel toxins and pathogens, this structure also prevents optimal drug delivery. Natural products, with their chemical diversity and sustainability, have long been recognized as potential neuroprotective compounds, making BBB permeability studies mandatory. Over the last ten years, biotechnological advances in two-dimensional <em>in vitro</em> BBB models (monoculture and co-culture), <em>in vivo</em> imaging techniques, and pharmacokinetic modeling have contributed to expanding our current knowledge. In this study, we have reviewed the BBB crossing of natural products such as different terpenoids, polyphenolic compounds, and alkaloids. The findings, obtained through <em>in vitro</em>, <em>in vivo</em>, and <em>silico</em> methods, revealed moderate to high permeability for many of these natural products. However, other compounds showed not to be able to reach the brain. To better understand the behavior of natural products in humans and improve their ability to pass across the blood-brainier, the development of new three-dimensional and dynamic models of the BBB, new nanosystems complexes for encapsulation or in-depth studies of the transport mechanism are current and future lines of research.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000613/pdfft?md5=cf81d235ff82a6bac0aa417759e0a697&pid=1-s2.0-S2590262824000613-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new frontier in neuropharmacology: Recent progress in natural products research for blood–brain barrier crossing\",\"authors\":\"Ureña-Vacas Isabel , Aznar de la Riera M. Belén , Serrano Dolores R , González-Burgos Elena\",\"doi\":\"10.1016/j.crbiot.2024.100235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuropharmacology faces challenges due to the intricate nervous system, diverse neurological disorders, and existence of the blood–brain barrier (BBB), which hinder the development of effective treatments. Although the primary function of the BBB is to expel toxins and pathogens, this structure also prevents optimal drug delivery. Natural products, with their chemical diversity and sustainability, have long been recognized as potential neuroprotective compounds, making BBB permeability studies mandatory. Over the last ten years, biotechnological advances in two-dimensional <em>in vitro</em> BBB models (monoculture and co-culture), <em>in vivo</em> imaging techniques, and pharmacokinetic modeling have contributed to expanding our current knowledge. In this study, we have reviewed the BBB crossing of natural products such as different terpenoids, polyphenolic compounds, and alkaloids. The findings, obtained through <em>in vitro</em>, <em>in vivo</em>, and <em>silico</em> methods, revealed moderate to high permeability for many of these natural products. However, other compounds showed not to be able to reach the brain. To better understand the behavior of natural products in humans and improve their ability to pass across the blood-brainier, the development of new three-dimensional and dynamic models of the BBB, new nanosystems complexes for encapsulation or in-depth studies of the transport mechanism are current and future lines of research.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000613/pdfft?md5=cf81d235ff82a6bac0aa417759e0a697&pid=1-s2.0-S2590262824000613-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A new frontier in neuropharmacology: Recent progress in natural products research for blood–brain barrier crossing
Neuropharmacology faces challenges due to the intricate nervous system, diverse neurological disorders, and existence of the blood–brain barrier (BBB), which hinder the development of effective treatments. Although the primary function of the BBB is to expel toxins and pathogens, this structure also prevents optimal drug delivery. Natural products, with their chemical diversity and sustainability, have long been recognized as potential neuroprotective compounds, making BBB permeability studies mandatory. Over the last ten years, biotechnological advances in two-dimensional in vitro BBB models (monoculture and co-culture), in vivo imaging techniques, and pharmacokinetic modeling have contributed to expanding our current knowledge. In this study, we have reviewed the BBB crossing of natural products such as different terpenoids, polyphenolic compounds, and alkaloids. The findings, obtained through in vitro, in vivo, and silico methods, revealed moderate to high permeability for many of these natural products. However, other compounds showed not to be able to reach the brain. To better understand the behavior of natural products in humans and improve their ability to pass across the blood-brainier, the development of new three-dimensional and dynamic models of the BBB, new nanosystems complexes for encapsulation or in-depth studies of the transport mechanism are current and future lines of research.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.