计算蛋白质组学平台破解蛋白质-蛋白质相互作用的威力

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2024-07-13 DOI:10.1016/j.sbi.2024.102882
Mariela González-Avendaño , Joaquín López , Ariela Vergara-Jaque , Oscar Cerda
{"title":"计算蛋白质组学平台破解蛋白质-蛋白质相互作用的威力","authors":"Mariela González-Avendaño ,&nbsp;Joaquín López ,&nbsp;Ariela Vergara-Jaque ,&nbsp;Oscar Cerda","doi":"10.1016/j.sbi.2024.102882","DOIUrl":null,"url":null,"abstract":"<div><p>Adopting computational tools for analyzing extensive biological datasets has profoundly transformed our understanding and interpretation of biological phenomena. Innovative platforms have emerged, providing automated analysis to unravel essential insights about proteins and the complexities of their interactions. These computational advancements align with traditional studies, which employ experimental techniques to discern and quantify physical and functional protein-protein interactions (PPIs). Among these techniques, tandem mass spectrometry is notably recognized for its precision and sensitivity in identifying PPIs. These approaches might serve as important information enabling the identification of PPIs with potential pharmacological significance. This review aims to convey our experience using computational tools for detecting PPI networks and offer an analysis of platforms that facilitate predictions derived from experimental data.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"88 ","pages":"Article 102882"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The power of computational proteomics platforms to decipher protein-protein interactions\",\"authors\":\"Mariela González-Avendaño ,&nbsp;Joaquín López ,&nbsp;Ariela Vergara-Jaque ,&nbsp;Oscar Cerda\",\"doi\":\"10.1016/j.sbi.2024.102882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adopting computational tools for analyzing extensive biological datasets has profoundly transformed our understanding and interpretation of biological phenomena. Innovative platforms have emerged, providing automated analysis to unravel essential insights about proteins and the complexities of their interactions. These computational advancements align with traditional studies, which employ experimental techniques to discern and quantify physical and functional protein-protein interactions (PPIs). Among these techniques, tandem mass spectrometry is notably recognized for its precision and sensitivity in identifying PPIs. These approaches might serve as important information enabling the identification of PPIs with potential pharmacological significance. This review aims to convey our experience using computational tools for detecting PPI networks and offer an analysis of platforms that facilitate predictions derived from experimental data.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"88 \",\"pages\":\"Article 102882\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X2400109X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X2400109X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用计算工具分析大量生物数据集,深刻地改变了我们对生物现象的理解和解释。创新平台不断涌现,它们提供自动分析功能,帮助我们深入了解蛋白质及其相互作用的复杂性。这些计算技术的进步与传统研究相吻合,后者采用实验技术来辨别和量化蛋白质与蛋白质之间的物理和功能性相互作用(PPIs)。在这些技术中,串联质谱法因其识别 PPI 的精确性和灵敏度而备受认可。这些方法可作为鉴定具有潜在药理意义的 PPI 的重要信息。本综述旨在介绍我们使用计算工具检测 PPI 网络的经验,并对有助于从实验数据中得出预测结果的平台进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The power of computational proteomics platforms to decipher protein-protein interactions

Adopting computational tools for analyzing extensive biological datasets has profoundly transformed our understanding and interpretation of biological phenomena. Innovative platforms have emerged, providing automated analysis to unravel essential insights about proteins and the complexities of their interactions. These computational advancements align with traditional studies, which employ experimental techniques to discern and quantify physical and functional protein-protein interactions (PPIs). Among these techniques, tandem mass spectrometry is notably recognized for its precision and sensitivity in identifying PPIs. These approaches might serve as important information enabling the identification of PPIs with potential pharmacological significance. This review aims to convey our experience using computational tools for detecting PPI networks and offer an analysis of platforms that facilitate predictions derived from experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
Characterizing heterogeneity in amyloid formation processes. Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships Deep learning for intrinsically disordered proteins: From improved predictions to deciphering conformational ensembles Short circuit: Transcription factor addiction as a growing vulnerability in cancer Conformational penalties: New insights into nucleic acid recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1