Joakim Nyberg , Andrew C. Hooker , Georg Zimmermann , Johan Verbeeck , Martin Geroldinger , Konstantin Emil Thiel , Geert Molenberghs , Martin Laimer , Verena Wally
{"title":"优化临床试验设计,应用于治疗一种罕见的遗传性皮肤病--单纯性表皮松解症","authors":"Joakim Nyberg , Andrew C. Hooker , Georg Zimmermann , Johan Verbeeck , Martin Geroldinger , Konstantin Emil Thiel , Geert Molenberghs , Martin Laimer , Verena Wally","doi":"10.1016/j.csda.2024.108015","DOIUrl":null,"url":null,"abstract":"<div><p>Epidermolysis bullosa simplex (EBS) skin disease is a rare disease, which renders the use of optimal design techniques especially important to maximize the potential information in a future study, that is, to make efficient use of the limited number of available subjects and observations. A generalized linear mixed effects model (GLMM), built on an EBS trial was used to optimize the design. The model assumed a full treatment effect in the follow-up period. In addition to this model, two models with either no assumed treatment effect or a linearly declining treatment effect in the follow-up were assumed. The information gain and loss when changing the number of EBS blisters counts, altering the duration of the treatment as well as changing the study period was assessed. In addition, optimization of the EBS blister assessment times was performed. The optimization was utilizing the derived Fisher information matrix for the GLMM with EBS blister counts and the information gain and loss was quantified by D-optimal efficiency. The optimization results indicated that using optimal assessment times increases the information of about 110-120%, varying slightly between the assumed treatment models. In addition, the result showed that the assessment times were also sensitive to be moved ± one week, but assessment times within ± two days were not decreasing the information as long as three assessments (out of four assessments in the trial period) were within the treatment period and not in the follow-up period. Increasing the number of assessments to six or five per trial period increased the information to 130% and 115%, respectively, while decreasing the number of assessments to two or three, decreased the information to 50% and 80%, respectively. Increasing the length of the trial period had a minor impact on the information, while increasing the treatment period by two and four weeks had a larger impact, 120% and 130%, respectively. To conclude, general applications of optimal design methodology, derivation of the Fisher information matrix for GLMM with count data and examples on how optimal design could be used when designing trials for treatment of the EBS disease is presented. The methodology is also of interest for study designs where maximizing the information is essential. Therefore, a general applied research guidance for using optimal design is also provided.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"199 ","pages":"Article 108015"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000999/pdfft?md5=f5085e42686fa3be3531f90fc0181a2c&pid=1-s2.0-S0167947324000999-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing designs in clinical trials with an application in treatment of Epidermolysis bullosa simplex, a rare genetic skin disease\",\"authors\":\"Joakim Nyberg , Andrew C. Hooker , Georg Zimmermann , Johan Verbeeck , Martin Geroldinger , Konstantin Emil Thiel , Geert Molenberghs , Martin Laimer , Verena Wally\",\"doi\":\"10.1016/j.csda.2024.108015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epidermolysis bullosa simplex (EBS) skin disease is a rare disease, which renders the use of optimal design techniques especially important to maximize the potential information in a future study, that is, to make efficient use of the limited number of available subjects and observations. A generalized linear mixed effects model (GLMM), built on an EBS trial was used to optimize the design. The model assumed a full treatment effect in the follow-up period. In addition to this model, two models with either no assumed treatment effect or a linearly declining treatment effect in the follow-up were assumed. The information gain and loss when changing the number of EBS blisters counts, altering the duration of the treatment as well as changing the study period was assessed. In addition, optimization of the EBS blister assessment times was performed. The optimization was utilizing the derived Fisher information matrix for the GLMM with EBS blister counts and the information gain and loss was quantified by D-optimal efficiency. The optimization results indicated that using optimal assessment times increases the information of about 110-120%, varying slightly between the assumed treatment models. In addition, the result showed that the assessment times were also sensitive to be moved ± one week, but assessment times within ± two days were not decreasing the information as long as three assessments (out of four assessments in the trial period) were within the treatment period and not in the follow-up period. Increasing the number of assessments to six or five per trial period increased the information to 130% and 115%, respectively, while decreasing the number of assessments to two or three, decreased the information to 50% and 80%, respectively. Increasing the length of the trial period had a minor impact on the information, while increasing the treatment period by two and four weeks had a larger impact, 120% and 130%, respectively. To conclude, general applications of optimal design methodology, derivation of the Fisher information matrix for GLMM with count data and examples on how optimal design could be used when designing trials for treatment of the EBS disease is presented. The methodology is also of interest for study designs where maximizing the information is essential. Therefore, a general applied research guidance for using optimal design is also provided.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"199 \",\"pages\":\"Article 108015\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000999/pdfft?md5=f5085e42686fa3be3531f90fc0181a2c&pid=1-s2.0-S0167947324000999-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000999\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000999","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Optimizing designs in clinical trials with an application in treatment of Epidermolysis bullosa simplex, a rare genetic skin disease
Epidermolysis bullosa simplex (EBS) skin disease is a rare disease, which renders the use of optimal design techniques especially important to maximize the potential information in a future study, that is, to make efficient use of the limited number of available subjects and observations. A generalized linear mixed effects model (GLMM), built on an EBS trial was used to optimize the design. The model assumed a full treatment effect in the follow-up period. In addition to this model, two models with either no assumed treatment effect or a linearly declining treatment effect in the follow-up were assumed. The information gain and loss when changing the number of EBS blisters counts, altering the duration of the treatment as well as changing the study period was assessed. In addition, optimization of the EBS blister assessment times was performed. The optimization was utilizing the derived Fisher information matrix for the GLMM with EBS blister counts and the information gain and loss was quantified by D-optimal efficiency. The optimization results indicated that using optimal assessment times increases the information of about 110-120%, varying slightly between the assumed treatment models. In addition, the result showed that the assessment times were also sensitive to be moved ± one week, but assessment times within ± two days were not decreasing the information as long as three assessments (out of four assessments in the trial period) were within the treatment period and not in the follow-up period. Increasing the number of assessments to six or five per trial period increased the information to 130% and 115%, respectively, while decreasing the number of assessments to two or three, decreased the information to 50% and 80%, respectively. Increasing the length of the trial period had a minor impact on the information, while increasing the treatment period by two and four weeks had a larger impact, 120% and 130%, respectively. To conclude, general applications of optimal design methodology, derivation of the Fisher information matrix for GLMM with count data and examples on how optimal design could be used when designing trials for treatment of the EBS disease is presented. The methodology is also of interest for study designs where maximizing the information is essential. Therefore, a general applied research guidance for using optimal design is also provided.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]