探索铋替代钇铁石榴石:洞察结构、光学和介电特性

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-07-04 DOI:10.1016/j.chphi.2024.100671
Ravindra Hazam , Manjushree Maity , Sachin Verma, Rajeev Singh, Biswanath Bhoi
{"title":"探索铋替代钇铁石榴石:洞察结构、光学和介电特性","authors":"Ravindra Hazam ,&nbsp;Manjushree Maity ,&nbsp;Sachin Verma,&nbsp;Rajeev Singh,&nbsp;Biswanath Bhoi","doi":"10.1016/j.chphi.2024.100671","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic garnets, a diverse group of magnetic insulating materials, have been the subject of extensive research for decades, owing to their versatility and potential for a wide range of applications. In this study, we synthesized Bismuth-Substituted Yttrium Iron Garnet (BiY<sub>2</sub>Fe<sub>5</sub>O<sub>12</sub>: BiYIG) using the solid-state reaction method to explore its structural, optical, and dielectric characteristics. X-ray diffraction analysis revealed the attainment of a pure cubic garnet phase in BiYIG, with a lattice parameter of 12.444 Å. Using UV–visible spectroscopy, we determined that the optical band gap of BiYIG is 2.2 eV, indicating n-type semiconductor behavior. We conducted a thorough investigation of the dielectric properties, examining capacitance, dielectric constant, dielectric loss, conductivity, impedance, and modulus, as functions of frequency and temperature. The impedance results revealed that the dielectric relaxation at room temperature was dominated by a Debye-type process, with a shift to a non-Debye-type process becoming apparent as temperature increased. Comprehensive analysis sheds light on the material's transport phenomena and optical attributes, offering insights into the potential of BiYIG for applications in magneto-dielectric and magneto-optical domains, given its high dielectric constant with low dielectric loss, and promising optical properties. These findings position BiYIG as a versatile material and underscore its suitability for advanced applications in future technological developments.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002159/pdfft?md5=ff3bcde70dfc1e50887301c4f0da30ea&pid=1-s2.0-S2667022424002159-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring bismuth-substituted yttrium iron garnet: Insights into structural, optical, and dielectric characteristics\",\"authors\":\"Ravindra Hazam ,&nbsp;Manjushree Maity ,&nbsp;Sachin Verma,&nbsp;Rajeev Singh,&nbsp;Biswanath Bhoi\",\"doi\":\"10.1016/j.chphi.2024.100671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetic garnets, a diverse group of magnetic insulating materials, have been the subject of extensive research for decades, owing to their versatility and potential for a wide range of applications. In this study, we synthesized Bismuth-Substituted Yttrium Iron Garnet (BiY<sub>2</sub>Fe<sub>5</sub>O<sub>12</sub>: BiYIG) using the solid-state reaction method to explore its structural, optical, and dielectric characteristics. X-ray diffraction analysis revealed the attainment of a pure cubic garnet phase in BiYIG, with a lattice parameter of 12.444 Å. Using UV–visible spectroscopy, we determined that the optical band gap of BiYIG is 2.2 eV, indicating n-type semiconductor behavior. We conducted a thorough investigation of the dielectric properties, examining capacitance, dielectric constant, dielectric loss, conductivity, impedance, and modulus, as functions of frequency and temperature. The impedance results revealed that the dielectric relaxation at room temperature was dominated by a Debye-type process, with a shift to a non-Debye-type process becoming apparent as temperature increased. Comprehensive analysis sheds light on the material's transport phenomena and optical attributes, offering insights into the potential of BiYIG for applications in magneto-dielectric and magneto-optical domains, given its high dielectric constant with low dielectric loss, and promising optical properties. These findings position BiYIG as a versatile material and underscore its suitability for advanced applications in future technological developments.</p></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002159/pdfft?md5=ff3bcde70dfc1e50887301c4f0da30ea&pid=1-s2.0-S2667022424002159-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

磁性石榴石是一类种类繁多的磁性绝缘材料,由于其多功能性和广泛的应用潜力,几十年来一直是广泛研究的主题。在这项研究中,我们采用固态反应方法合成了铋取代钇铁石榴石(BiY2Fe5O12:BiYIG),以探索其结构、光学和介电特性。X 射线衍射分析表明 BiYIG 具有纯立方石榴石相,晶格参数为 12.444 Å。我们对介电特性进行了深入研究,检测了电容、介电常数、介电损耗、电导率、阻抗和模量与频率和温度的函数关系。阻抗结果显示,室温下的介电弛豫以德拜型过程为主,随着温度的升高,介电弛豫明显向非德拜型过程转变。综合分析揭示了该材料的传输现象和光学特性,鉴于 BiYIG 具有高介电常数、低介电损耗和良好的光学特性,为其在磁介质和磁光领域的应用潜力提供了启示。这些发现将 BiYIG 定义为一种多功能材料,并强调了它在未来技术发展中的先进应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring bismuth-substituted yttrium iron garnet: Insights into structural, optical, and dielectric characteristics

Magnetic garnets, a diverse group of magnetic insulating materials, have been the subject of extensive research for decades, owing to their versatility and potential for a wide range of applications. In this study, we synthesized Bismuth-Substituted Yttrium Iron Garnet (BiY2Fe5O12: BiYIG) using the solid-state reaction method to explore its structural, optical, and dielectric characteristics. X-ray diffraction analysis revealed the attainment of a pure cubic garnet phase in BiYIG, with a lattice parameter of 12.444 Å. Using UV–visible spectroscopy, we determined that the optical band gap of BiYIG is 2.2 eV, indicating n-type semiconductor behavior. We conducted a thorough investigation of the dielectric properties, examining capacitance, dielectric constant, dielectric loss, conductivity, impedance, and modulus, as functions of frequency and temperature. The impedance results revealed that the dielectric relaxation at room temperature was dominated by a Debye-type process, with a shift to a non-Debye-type process becoming apparent as temperature increased. Comprehensive analysis sheds light on the material's transport phenomena and optical attributes, offering insights into the potential of BiYIG for applications in magneto-dielectric and magneto-optical domains, given its high dielectric constant with low dielectric loss, and promising optical properties. These findings position BiYIG as a versatile material and underscore its suitability for advanced applications in future technological developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1