Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen
{"title":"调节酮基的反应性以介导偶联物和羰基化合物的选择性合成","authors":"Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen","doi":"10.1016/S1872-2067(24)60045-8","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of selective synthesis of high-value-added chemicals from renewable resources is paramount but remains a crucial challenge in organic synthesis and chemical reformation. Herein, we report the selective photosynthesis of C–C coupling products and carbonyl compounds from biomass-derived alcohols. The key to ensuring high end-to-end selectivity is the modulation of the reactivity of ketyl radical (*RCHOH) intermediates by employing different metal co-catalysts (Au, Pt, Pd, Ru) supported on Cd<sub>0.6</sub>Zn<sub>0.4</sub>S solid solution (CZS) photocatalysts. In particular, the C–C coupling product, hydrobenzion, and fully oxidized benzaldehyde were obtained from benzyl alcohol with high selectivity (> 98%) over Au-CZS and Ru-CZS, respectively. Combined experimental and theoretical analyses demonstrated that the affinity of *RCHOH for the surface of metals governs their subsequent transformations, in which weak and strong radical adsorption on Au and Ru results in C–C coupling products and carbonyl compounds, respectively.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"61 ","pages":"Pages 135-143"},"PeriodicalIF":15.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds\",\"authors\":\"Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen\",\"doi\":\"10.1016/S1872-2067(24)60045-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The importance of selective synthesis of high-value-added chemicals from renewable resources is paramount but remains a crucial challenge in organic synthesis and chemical reformation. Herein, we report the selective photosynthesis of C–C coupling products and carbonyl compounds from biomass-derived alcohols. The key to ensuring high end-to-end selectivity is the modulation of the reactivity of ketyl radical (*RCHOH) intermediates by employing different metal co-catalysts (Au, Pt, Pd, Ru) supported on Cd<sub>0.6</sub>Zn<sub>0.4</sub>S solid solution (CZS) photocatalysts. In particular, the C–C coupling product, hydrobenzion, and fully oxidized benzaldehyde were obtained from benzyl alcohol with high selectivity (> 98%) over Au-CZS and Ru-CZS, respectively. Combined experimental and theoretical analyses demonstrated that the affinity of *RCHOH for the surface of metals governs their subsequent transformations, in which weak and strong radical adsorption on Au and Ru results in C–C coupling products and carbonyl compounds, respectively.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"61 \",\"pages\":\"Pages 135-143\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600458\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600458","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds
The importance of selective synthesis of high-value-added chemicals from renewable resources is paramount but remains a crucial challenge in organic synthesis and chemical reformation. Herein, we report the selective photosynthesis of C–C coupling products and carbonyl compounds from biomass-derived alcohols. The key to ensuring high end-to-end selectivity is the modulation of the reactivity of ketyl radical (*RCHOH) intermediates by employing different metal co-catalysts (Au, Pt, Pd, Ru) supported on Cd0.6Zn0.4S solid solution (CZS) photocatalysts. In particular, the C–C coupling product, hydrobenzion, and fully oxidized benzaldehyde were obtained from benzyl alcohol with high selectivity (> 98%) over Au-CZS and Ru-CZS, respectively. Combined experimental and theoretical analyses demonstrated that the affinity of *RCHOH for the surface of metals governs their subsequent transformations, in which weak and strong radical adsorption on Au and Ru results in C–C coupling products and carbonyl compounds, respectively.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.