{"title":"用于有效评估散射场的笛卡尔/非结构化混合数值方法:应用于机载平台的埋藏物探测","authors":"Lisa-Marie Mazzolo, Xavier Ferrieres","doi":"10.1002/jnm.3270","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the study and development of an efficient numerical method designed to simulate the radar cross section (RCS) of objects buried in lossy ground and illuminated by a plane wave. The primary objective aligns with the overarching challenge of detecting buried targets in the ground using an airborne radar system. In this scenario, a source antenna illuminates a considered 3D domain, and sensors receive the scattered field from the targets. To enable accurate and efficient simulations, the proposed tool utilizes a Cartesian/unstructured mesh and employs hybrid method that combines two finite volume solvers. In the contents of the paper, we first present a strategy for obtaining Cartesian/unstructured meshes. Subsequently, we study the hybridization of two specific finite volume schemes. Additionaly, a ground and a Near- to Far-field model are introduced for buried targets. To validate and showcase the advantages of our hybrid approach, practical examples are presented. Finally, the strategy designed for handling meshes composed of multiple Cartesian and unstructured zones is detailed.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnm.3270","citationCount":"0","resultStr":"{\"title\":\"Hybrid Cartesian/unstructured numerical method for efficient evaluation of scattered fields: Application to buried object detection from airborne platforms\",\"authors\":\"Lisa-Marie Mazzolo, Xavier Ferrieres\",\"doi\":\"10.1002/jnm.3270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on the study and development of an efficient numerical method designed to simulate the radar cross section (RCS) of objects buried in lossy ground and illuminated by a plane wave. The primary objective aligns with the overarching challenge of detecting buried targets in the ground using an airborne radar system. In this scenario, a source antenna illuminates a considered 3D domain, and sensors receive the scattered field from the targets. To enable accurate and efficient simulations, the proposed tool utilizes a Cartesian/unstructured mesh and employs hybrid method that combines two finite volume solvers. In the contents of the paper, we first present a strategy for obtaining Cartesian/unstructured meshes. Subsequently, we study the hybridization of two specific finite volume schemes. Additionaly, a ground and a Near- to Far-field model are introduced for buried targets. To validate and showcase the advantages of our hybrid approach, practical examples are presented. Finally, the strategy designed for handling meshes composed of multiple Cartesian and unstructured zones is detailed.</p>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":\"37 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnm.3270\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3270\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3270","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hybrid Cartesian/unstructured numerical method for efficient evaluation of scattered fields: Application to buried object detection from airborne platforms
This paper focuses on the study and development of an efficient numerical method designed to simulate the radar cross section (RCS) of objects buried in lossy ground and illuminated by a plane wave. The primary objective aligns with the overarching challenge of detecting buried targets in the ground using an airborne radar system. In this scenario, a source antenna illuminates a considered 3D domain, and sensors receive the scattered field from the targets. To enable accurate and efficient simulations, the proposed tool utilizes a Cartesian/unstructured mesh and employs hybrid method that combines two finite volume solvers. In the contents of the paper, we first present a strategy for obtaining Cartesian/unstructured meshes. Subsequently, we study the hybridization of two specific finite volume schemes. Additionaly, a ground and a Near- to Far-field model are introduced for buried targets. To validate and showcase the advantages of our hybrid approach, practical examples are presented. Finally, the strategy designed for handling meshes composed of multiple Cartesian and unstructured zones is detailed.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.