探索极化涡流束在散射介质中生存能力更强的原因

IF 1.5 4区 物理与天体物理 Q3 OPTICS Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-07-11 DOI:10.1088/1361-6455/ad5e22
Atharva Paranjape, Shyamal Guchhait, Athira B S and Nirmalya Ghosh
{"title":"探索极化涡流束在散射介质中生存能力更强的原因","authors":"Atharva Paranjape, Shyamal Guchhait, Athira B S and Nirmalya Ghosh","doi":"10.1088/1361-6455/ad5e22","DOIUrl":null,"url":null,"abstract":"Laguerre–Gaussian (LG) beams carrying orbital angular momentum (OAM) have shown promise in deep tissue imaging, medical diagnostics, and optical communication due to their robust propagation properties through scattering media. The insight on the mechanism for stronger survival of OAM carrying beam in tissue-like turbid media is expected to contribute towards a better understanding of light transport in the presence of scattering, as well as guide optimization of the intensity, phase, and polarization structure of light for use in biomedical applications like in tissue imaging. We examine the scattering properties by studying the propagation of polarized vortex beams transmitted through tissue-like turbid scattering media. We demonstrate that the intensity profile has a much more profound effect on depolarization than the phase profile for LG beams. Our results indicate that the observed stronger propagation for the higher-order LG beams is due to a higher anisotropy factor g, as seen by the incident beam. We have performed the degree of polarization measurements for the forward scattered light in the case of both LG beams and perfect vortex beams with varying topological charges. A comparison between the observed depolarization trends for the two classes of OAM-carrying beams suggests that the robust scattering properties of the LG beams originate from the intensity profile while the phase profile does not seem to play a major role in the stronger survival of OAM-carrying beam in turbid media.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the origin of stronger survival of polarized vortex beams through scattering media\",\"authors\":\"Atharva Paranjape, Shyamal Guchhait, Athira B S and Nirmalya Ghosh\",\"doi\":\"10.1088/1361-6455/ad5e22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laguerre–Gaussian (LG) beams carrying orbital angular momentum (OAM) have shown promise in deep tissue imaging, medical diagnostics, and optical communication due to their robust propagation properties through scattering media. The insight on the mechanism for stronger survival of OAM carrying beam in tissue-like turbid media is expected to contribute towards a better understanding of light transport in the presence of scattering, as well as guide optimization of the intensity, phase, and polarization structure of light for use in biomedical applications like in tissue imaging. We examine the scattering properties by studying the propagation of polarized vortex beams transmitted through tissue-like turbid scattering media. We demonstrate that the intensity profile has a much more profound effect on depolarization than the phase profile for LG beams. Our results indicate that the observed stronger propagation for the higher-order LG beams is due to a higher anisotropy factor g, as seen by the incident beam. We have performed the degree of polarization measurements for the forward scattered light in the case of both LG beams and perfect vortex beams with varying topological charges. A comparison between the observed depolarization trends for the two classes of OAM-carrying beams suggests that the robust scattering properties of the LG beams originate from the intensity profile while the phase profile does not seem to play a major role in the stronger survival of OAM-carrying beam in turbid media.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad5e22\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad5e22","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

携带轨道角动量(OAM)的拉盖尔-高斯(LG)光束因其在散射介质中的强大传播特性,在深部组织成像、医疗诊断和光通信领域大有可为。深入了解携带轨道角动量(OAM)的光束在组织类浑浊介质中更强的生存机制,有望有助于更好地理解散射情况下的光传输,并指导优化光的强度、相位和偏振结构,以用于组织成像等生物医学应用。我们通过研究偏振涡旋光束在组织类浊度散射介质中的传播来检验散射特性。我们证明,对于 LG 光束而言,强度曲线对去极化的影响要比相位曲线大得多。我们的研究结果表明,高阶 LG 光束的强传播是由于入射光束的各向异性因子 g 较高所致。我们对 LG 光束和具有不同拓扑电荷的完美涡旋光束的前向散射光进行了偏振度测量。对两类携带 OAM 的光束所观察到的去极化趋势进行比较后发现,LG 光束的强大散射特性源于其强度曲线,而相位曲线似乎对携带 OAM 的光束在浊介质中更强的生存能力不起主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the origin of stronger survival of polarized vortex beams through scattering media
Laguerre–Gaussian (LG) beams carrying orbital angular momentum (OAM) have shown promise in deep tissue imaging, medical diagnostics, and optical communication due to their robust propagation properties through scattering media. The insight on the mechanism for stronger survival of OAM carrying beam in tissue-like turbid media is expected to contribute towards a better understanding of light transport in the presence of scattering, as well as guide optimization of the intensity, phase, and polarization structure of light for use in biomedical applications like in tissue imaging. We examine the scattering properties by studying the propagation of polarized vortex beams transmitted through tissue-like turbid scattering media. We demonstrate that the intensity profile has a much more profound effect on depolarization than the phase profile for LG beams. Our results indicate that the observed stronger propagation for the higher-order LG beams is due to a higher anisotropy factor g, as seen by the incident beam. We have performed the degree of polarization measurements for the forward scattered light in the case of both LG beams and perfect vortex beams with varying topological charges. A comparison between the observed depolarization trends for the two classes of OAM-carrying beams suggests that the robust scattering properties of the LG beams originate from the intensity profile while the phase profile does not seem to play a major role in the stronger survival of OAM-carrying beam in turbid media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
期刊最新文献
X-ray circular dichroism measured by cross-polarization x-ray transient grating Toward a Mølmer Sørensen gate with .9999 fidelity Quantum states and spectra of small cylindrical and toroidal lattices Addendum: Multichannel quantum defect theory of strontium bound Rydberg states (2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001) Absolute nuclear charge radius by Na-like spectral line separation in high-Z elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1