考虑纳米级孔隙率对 PECVD 涂层中质量传输现象的影响

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Physics D: Applied Physics Pub Date : 2024-07-11 DOI:10.1088/1361-6463/ad5e91
J Franke, F Zysk, S Wilski, M O Liedke, M Butterling, A G Attallah, A Wagner, T D Kühne and R Dahlmann
{"title":"考虑纳米级孔隙率对 PECVD 涂层中质量传输现象的影响","authors":"J Franke, F Zysk, S Wilski, M O Liedke, M Butterling, A G Attallah, A Wagner, T D Kühne and R Dahlmann","doi":"10.1088/1361-6463/ad5e91","DOIUrl":null,"url":null,"abstract":"Here we show a novel approach to characterize the gas transfer behavior of silicon-oxide (SiOx) coatings and explain the underlying dynamics. For this, we investigate the coating on a nm-scale both by measurement and simulation. Positron annihilation spectroscopy (PAS) and quantum mechanical electronic structure-based molecular dynamics simulations are combined to characterize the porous landscape of SiOx coatings. This approach analyses the influence of micropores smaller than 2 nm in diameter on gas permeation which are difficult to study with conventional methods. We lay out the main pore diameter ranges and their associated porosity estimates. An influence of layer growth on pore size and porosity was found, with an increased energy input during layer deposition leading to smaller pore sizes and a reduced porosity. The molecular dynamics simulations quantify the self-diffusion of oxygen and water vapor through those PAS deducted micropore ranges for hydrophilic and hydrophobic systems. The theoretical pore size ranges are fitting to our PAS results and complete them by giving diffusion coefficients. This approach enables detailed analysis of pore morphology on mass transport through thin film coatings and characterization of their barrier or membrane performance. This is a crucial prerequisite for the development of an exhaustive model of pore dominated mass transports in PECVD coatings.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"32 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consideration of the effect of nanoscale porosity on mass transport phenomena in PECVD coatings\",\"authors\":\"J Franke, F Zysk, S Wilski, M O Liedke, M Butterling, A G Attallah, A Wagner, T D Kühne and R Dahlmann\",\"doi\":\"10.1088/1361-6463/ad5e91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we show a novel approach to characterize the gas transfer behavior of silicon-oxide (SiOx) coatings and explain the underlying dynamics. For this, we investigate the coating on a nm-scale both by measurement and simulation. Positron annihilation spectroscopy (PAS) and quantum mechanical electronic structure-based molecular dynamics simulations are combined to characterize the porous landscape of SiOx coatings. This approach analyses the influence of micropores smaller than 2 nm in diameter on gas permeation which are difficult to study with conventional methods. We lay out the main pore diameter ranges and their associated porosity estimates. An influence of layer growth on pore size and porosity was found, with an increased energy input during layer deposition leading to smaller pore sizes and a reduced porosity. The molecular dynamics simulations quantify the self-diffusion of oxygen and water vapor through those PAS deducted micropore ranges for hydrophilic and hydrophobic systems. The theoretical pore size ranges are fitting to our PAS results and complete them by giving diffusion coefficients. This approach enables detailed analysis of pore morphology on mass transport through thin film coatings and characterization of their barrier or membrane performance. This is a crucial prerequisite for the development of an exhaustive model of pore dominated mass transports in PECVD coatings.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad5e91\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad5e91","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们展示了一种新方法来描述氧化硅(SiOx)涂层的气体传输行为并解释其基本动态。为此,我们在纳米尺度上对涂层进行了测量和模拟研究。正电子湮灭光谱(PAS)和基于量子力学电子结构的分子动力学模拟相结合,描述了氧化硅涂层的多孔结构。这种方法分析了直径小于 2 纳米的微孔对气体渗透的影响,而传统方法很难研究这些微孔。我们列出了主要的孔隙直径范围及其相关的孔隙率估计值。我们发现,层的生长对孔径和孔隙率有影响,层沉积过程中能量输入的增加会导致孔径变小和孔隙率降低。分子动力学模拟量化了氧气和水蒸气通过亲水和疏水系统的 PAS 扣除微孔范围的自扩散情况。理论孔隙大小范围与我们的 PAS 结果相匹配,并通过给出扩散系数来完善这些结果。通过这种方法,可以详细分析孔隙形态对薄膜涂层质量传输的影响,并鉴定其阻隔或膜性能。这是开发 PECVD 涂层中孔隙主导质量传输详尽模型的重要前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consideration of the effect of nanoscale porosity on mass transport phenomena in PECVD coatings
Here we show a novel approach to characterize the gas transfer behavior of silicon-oxide (SiOx) coatings and explain the underlying dynamics. For this, we investigate the coating on a nm-scale both by measurement and simulation. Positron annihilation spectroscopy (PAS) and quantum mechanical electronic structure-based molecular dynamics simulations are combined to characterize the porous landscape of SiOx coatings. This approach analyses the influence of micropores smaller than 2 nm in diameter on gas permeation which are difficult to study with conventional methods. We lay out the main pore diameter ranges and their associated porosity estimates. An influence of layer growth on pore size and porosity was found, with an increased energy input during layer deposition leading to smaller pore sizes and a reduced porosity. The molecular dynamics simulations quantify the self-diffusion of oxygen and water vapor through those PAS deducted micropore ranges for hydrophilic and hydrophobic systems. The theoretical pore size ranges are fitting to our PAS results and complete them by giving diffusion coefficients. This approach enables detailed analysis of pore morphology on mass transport through thin film coatings and characterization of their barrier or membrane performance. This is a crucial prerequisite for the development of an exhaustive model of pore dominated mass transports in PECVD coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
期刊最新文献
Recent progresses and applications on chiroptical metamaterials: a review Oxygen vacancies kinetics in TaO 2 − ... Numerical simulations of a low-pressure electrodeless ion source intended for air-breathing electric propulsion Electrical surface breakdown characteristics of micro- and nano-Al2O3 particle co-doped epoxy composites Wide-angle reflection control with a reflective digital coding metasurface for 5G communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1