单层二维金属有机框架纳米片的合成与应用的最新进展

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Small Science Pub Date : 2024-07-10 DOI:10.1002/smsc.202400132
Yu Wang, Juan Ma, Fei Jin, Tong Li, Negar Javanmardi, Yuyuan He, Guanzhou Zhu, Siwei Zhang, Jian-Da Xu, Ting Wang, Zhang-Qi Feng
{"title":"单层二维金属有机框架纳米片的合成与应用的最新进展","authors":"Yu Wang, Juan Ma, Fei Jin, Tong Li, Negar Javanmardi, Yuyuan He, Guanzhou Zhu, Siwei Zhang, Jian-Da Xu, Ting Wang, Zhang-Qi Feng","doi":"10.1002/smsc.202400132","DOIUrl":null,"url":null,"abstract":"Monolayer 2D metal-organic framework (MOF) nanosheets, characterized by abundant exposed active sites and tunable structure and function (such as altering the metal nodes or organic ligands), have emerged as a pivotal class of 2D materials, demonstrating irreplaceable applications across diverse research domains in materials and chemistry. This review provides a comprehensive survey of the latest research progress in the synthesis of monolayer 2D MOF nanosheets. Specifically, recent synthetic strategies, including top-down and bottom-up methods, are delved and their applications in gas separation, catalysis, sensing platforms, and energy storage are explored. Additionally, the challenges faced in the investigation of monolayer 2D MOF nanosheets are elucidated and future opportunities for these materials as a novel generation of 2D materials are outlined.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"7 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in the Synthesis and Application of Monolayer 2D Metal-Organic Framework Nanosheets\",\"authors\":\"Yu Wang, Juan Ma, Fei Jin, Tong Li, Negar Javanmardi, Yuyuan He, Guanzhou Zhu, Siwei Zhang, Jian-Da Xu, Ting Wang, Zhang-Qi Feng\",\"doi\":\"10.1002/smsc.202400132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolayer 2D metal-organic framework (MOF) nanosheets, characterized by abundant exposed active sites and tunable structure and function (such as altering the metal nodes or organic ligands), have emerged as a pivotal class of 2D materials, demonstrating irreplaceable applications across diverse research domains in materials and chemistry. This review provides a comprehensive survey of the latest research progress in the synthesis of monolayer 2D MOF nanosheets. Specifically, recent synthetic strategies, including top-down and bottom-up methods, are delved and their applications in gas separation, catalysis, sensing platforms, and energy storage are explored. Additionally, the challenges faced in the investigation of monolayer 2D MOF nanosheets are elucidated and future opportunities for these materials as a novel generation of 2D materials are outlined.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单层二维金属有机框架(MOF)纳米片具有丰富的暴露活性位点和可调结构与功能(如改变金属节点或有机配体)的特点,已成为一类举足轻重的二维材料,在材料与化学的不同研究领域展示出不可替代的应用前景。本综述全面介绍了单层二维 MOF 纳米片合成的最新研究进展。具体而言,本文深入探讨了最新的合成策略,包括自上而下和自下而上的方法,并探讨了它们在气体分离、催化、传感平台和储能方面的应用。此外,还阐明了研究单层二维 MOF 纳米片所面临的挑战,并概述了这些材料作为新一代二维材料的未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advances in the Synthesis and Application of Monolayer 2D Metal-Organic Framework Nanosheets
Monolayer 2D metal-organic framework (MOF) nanosheets, characterized by abundant exposed active sites and tunable structure and function (such as altering the metal nodes or organic ligands), have emerged as a pivotal class of 2D materials, demonstrating irreplaceable applications across diverse research domains in materials and chemistry. This review provides a comprehensive survey of the latest research progress in the synthesis of monolayer 2D MOF nanosheets. Specifically, recent synthetic strategies, including top-down and bottom-up methods, are delved and their applications in gas separation, catalysis, sensing platforms, and energy storage are explored. Additionally, the challenges faced in the investigation of monolayer 2D MOF nanosheets are elucidated and future opportunities for these materials as a novel generation of 2D materials are outlined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
期刊最新文献
Multi-Organ Microphysiological Systems Targeting Specific Organs for Recapitulating Disease Phenotypes via Organ Crosstalk Inflammatory or Reparative? Tuning Macrophage Polarization Using Anodized Anisotropic Nanoporous Titanium Implant Surfaces Ultralow Lattice Thermal Conductivity of Zintl-Phase CaAgSb Induced by Interface and Superlattice Scattering Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons Flexible Phototransistors on Paper: Scalable Fabrication of PEDOT:PSS Devices Using a Pen Plotter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1