Shreya Thiagarajan, A. Vijayalakshmi, G. Hannah Grace
{"title":"精准农业中的杂草检测:利用编码器-解码器模型进行语义分割","authors":"Shreya Thiagarajan, A. Vijayalakshmi, G. Hannah Grace","doi":"10.1007/s12652-024-04832-9","DOIUrl":null,"url":null,"abstract":"<p>Precision agriculture uses data gathered from various sources to improve agricultural yields and the effectiveness of crop management techniques like fertiliser application, irrigation management, and pesticide application. Reduced usage of agrochemicals is a key step towards more sustainable agriculture. Weed management robots which can perform tasks like selective sprinkling or mechanical weed elimination, contribute to this objective. A trustworthy crop/weed classification system that can accurately recognise and classify crops and weeds is required for these robots to function. In this paper, we explore various deep learning models for achieving reliable segmentation results in less training time. We classify every pixel of the images into different categories using semantic segmentation models. The models are based on an encoder-decoder architecture, where feature maps are extracted during encoding and spatial information is recovered during decoding. We examine the segmentation output on a beans dataset containing different weeds, which were collected under highly distinct environmental conditions, including cloudy, rainy, dawn, evening, full sun, and shadow.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weed detection in precision agriculture: leveraging encoder-decoder models for semantic segmentation\",\"authors\":\"Shreya Thiagarajan, A. Vijayalakshmi, G. Hannah Grace\",\"doi\":\"10.1007/s12652-024-04832-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precision agriculture uses data gathered from various sources to improve agricultural yields and the effectiveness of crop management techniques like fertiliser application, irrigation management, and pesticide application. Reduced usage of agrochemicals is a key step towards more sustainable agriculture. Weed management robots which can perform tasks like selective sprinkling or mechanical weed elimination, contribute to this objective. A trustworthy crop/weed classification system that can accurately recognise and classify crops and weeds is required for these robots to function. In this paper, we explore various deep learning models for achieving reliable segmentation results in less training time. We classify every pixel of the images into different categories using semantic segmentation models. The models are based on an encoder-decoder architecture, where feature maps are extracted during encoding and spatial information is recovered during decoding. We examine the segmentation output on a beans dataset containing different weeds, which were collected under highly distinct environmental conditions, including cloudy, rainy, dawn, evening, full sun, and shadow.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04832-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04832-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Weed detection in precision agriculture: leveraging encoder-decoder models for semantic segmentation
Precision agriculture uses data gathered from various sources to improve agricultural yields and the effectiveness of crop management techniques like fertiliser application, irrigation management, and pesticide application. Reduced usage of agrochemicals is a key step towards more sustainable agriculture. Weed management robots which can perform tasks like selective sprinkling or mechanical weed elimination, contribute to this objective. A trustworthy crop/weed classification system that can accurately recognise and classify crops and weeds is required for these robots to function. In this paper, we explore various deep learning models for achieving reliable segmentation results in less training time. We classify every pixel of the images into different categories using semantic segmentation models. The models are based on an encoder-decoder architecture, where feature maps are extracted during encoding and spatial information is recovered during decoding. We examine the segmentation output on a beans dataset containing different weeds, which were collected under highly distinct environmental conditions, including cloudy, rainy, dawn, evening, full sun, and shadow.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators