Peng-Jun Deng, Yaxuan Wang, Yang Liu, Jiajia Lu, Han-Pu Liang
{"title":"作为碱性海水中氢气进化高效催化剂的镍的热诱导异构化和磷化","authors":"Peng-Jun Deng, Yaxuan Wang, Yang Liu, Jiajia Lu, Han-Pu Liang","doi":"10.1016/j.mtener.2024.101635","DOIUrl":null,"url":null,"abstract":"Developing electrolytic seawater catalysts with excellent performance is crucial for efficient hydrogen production. In this study, NiP nanoparticles anchored on NiMo oxides, denoted as NiMo-P, are synthesized through heat-induced aliquation and phosphating of Ni in the ammonium nickel molybdate. Physicochemical characterizations reveal that the abundant NiP nanoparticles are uniformly distributed on NiMo oxides. Electrochemical data reveal that a mere overpotential of 103 mV is sufficient to achieve −100 mA cm in alkaline simulated seawater, which is significantly lower than that of Pt foil (179 mV) and commercial Pt/C (165 mV). This remarkable activity observed in NiMo-P may be due to the superior water dissociation activity and hydrogen desorption ability of the NiP nanoparticles, as calculated by density functional theory, which surpasses that of Pt. Meanwhile, the NiMo-P exhibits outstanding stability, as evidenced by the chronoamperometric curve. The current remains at 98.1% of its initial value after 500 h, which can be attributed to the etching-hydrolysis method that strengthens the catalyst-carrier interaction. Besides, the inherent repulsion toward chlorine ions at the cathode effectively avoids chemical corrosion. Importantly, when coupled with the previously reported anode, NiMo-P also exhibits exceptional performance in alkaline seawater.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"40 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat-induced aliquation and phosphating of nickel as efficient catalysts for hydrogen evolution in alkaline seawater\",\"authors\":\"Peng-Jun Deng, Yaxuan Wang, Yang Liu, Jiajia Lu, Han-Pu Liang\",\"doi\":\"10.1016/j.mtener.2024.101635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing electrolytic seawater catalysts with excellent performance is crucial for efficient hydrogen production. In this study, NiP nanoparticles anchored on NiMo oxides, denoted as NiMo-P, are synthesized through heat-induced aliquation and phosphating of Ni in the ammonium nickel molybdate. Physicochemical characterizations reveal that the abundant NiP nanoparticles are uniformly distributed on NiMo oxides. Electrochemical data reveal that a mere overpotential of 103 mV is sufficient to achieve −100 mA cm in alkaline simulated seawater, which is significantly lower than that of Pt foil (179 mV) and commercial Pt/C (165 mV). This remarkable activity observed in NiMo-P may be due to the superior water dissociation activity and hydrogen desorption ability of the NiP nanoparticles, as calculated by density functional theory, which surpasses that of Pt. Meanwhile, the NiMo-P exhibits outstanding stability, as evidenced by the chronoamperometric curve. The current remains at 98.1% of its initial value after 500 h, which can be attributed to the etching-hydrolysis method that strengthens the catalyst-carrier interaction. Besides, the inherent repulsion toward chlorine ions at the cathode effectively avoids chemical corrosion. Importantly, when coupled with the previously reported anode, NiMo-P also exhibits exceptional performance in alkaline seawater.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101635\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101635","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Heat-induced aliquation and phosphating of nickel as efficient catalysts for hydrogen evolution in alkaline seawater
Developing electrolytic seawater catalysts with excellent performance is crucial for efficient hydrogen production. In this study, NiP nanoparticles anchored on NiMo oxides, denoted as NiMo-P, are synthesized through heat-induced aliquation and phosphating of Ni in the ammonium nickel molybdate. Physicochemical characterizations reveal that the abundant NiP nanoparticles are uniformly distributed on NiMo oxides. Electrochemical data reveal that a mere overpotential of 103 mV is sufficient to achieve −100 mA cm in alkaline simulated seawater, which is significantly lower than that of Pt foil (179 mV) and commercial Pt/C (165 mV). This remarkable activity observed in NiMo-P may be due to the superior water dissociation activity and hydrogen desorption ability of the NiP nanoparticles, as calculated by density functional theory, which surpasses that of Pt. Meanwhile, the NiMo-P exhibits outstanding stability, as evidenced by the chronoamperometric curve. The current remains at 98.1% of its initial value after 500 h, which can be attributed to the etching-hydrolysis method that strengthens the catalyst-carrier interaction. Besides, the inherent repulsion toward chlorine ions at the cathode effectively avoids chemical corrosion. Importantly, when coupled with the previously reported anode, NiMo-P also exhibits exceptional performance in alkaline seawater.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials