{"title":"MoO3、WO3 和 Bi2WO6 上的光色转换:从机理到材料和应用","authors":"Xu Dong, Yongjuan Dang, Zhengyu Wu, Yindong Tong, Xianhua Liu, Yiren Lu","doi":"10.1016/j.mtener.2024.101632","DOIUrl":null,"url":null,"abstract":"Because of their good chemical stability and excellent optical properties, MoO, WO, and BiWO are important in photochromism. Their light-to-color conversion is highly dependent on the electronic band structure and charge transfer, and they obey the mechanism of electron accumulation in semiconductors when excited within the bandgap. Pure semiconductors face limitations in practical applications due to insufficient light absorption, charge carrier recombination, and low charge capacity. Diverse forms of photochromic hybrids (nanopowders, films, hydrogels, and multilayer structures) with rapid change, repeatability, and reversibility are possible via nanocustomization, surface/interface engineering, heterojunction fabrication, and complexing organic ligands. Manipulating the function of photochromic systems through light stimulation is becoming an attractive paradigm, divided into two branches: light-color complementarity and photoconductivity. This review examines the widely accepted photoresponsive principles and the still controversial energy transfer models. We emphasize the correlation between material properties and performance enhancement to inspire the rational structure design. The bottlenecks in current development are identified by analyzing application-specific innovation concepts, fabrication processes, and performance metrics. In addition, we present several perspectives to encourage meaningful multidisciplinary collaboration.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-to-color conversion on MoO3, WO3, and Bi2WO6: from mechanism to materials and applications\",\"authors\":\"Xu Dong, Yongjuan Dang, Zhengyu Wu, Yindong Tong, Xianhua Liu, Yiren Lu\",\"doi\":\"10.1016/j.mtener.2024.101632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of their good chemical stability and excellent optical properties, MoO, WO, and BiWO are important in photochromism. Their light-to-color conversion is highly dependent on the electronic band structure and charge transfer, and they obey the mechanism of electron accumulation in semiconductors when excited within the bandgap. Pure semiconductors face limitations in practical applications due to insufficient light absorption, charge carrier recombination, and low charge capacity. Diverse forms of photochromic hybrids (nanopowders, films, hydrogels, and multilayer structures) with rapid change, repeatability, and reversibility are possible via nanocustomization, surface/interface engineering, heterojunction fabrication, and complexing organic ligands. Manipulating the function of photochromic systems through light stimulation is becoming an attractive paradigm, divided into two branches: light-color complementarity and photoconductivity. This review examines the widely accepted photoresponsive principles and the still controversial energy transfer models. We emphasize the correlation between material properties and performance enhancement to inspire the rational structure design. The bottlenecks in current development are identified by analyzing application-specific innovation concepts, fabrication processes, and performance metrics. In addition, we present several perspectives to encourage meaningful multidisciplinary collaboration.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101632\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101632","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Light-to-color conversion on MoO3, WO3, and Bi2WO6: from mechanism to materials and applications
Because of their good chemical stability and excellent optical properties, MoO, WO, and BiWO are important in photochromism. Their light-to-color conversion is highly dependent on the electronic band structure and charge transfer, and they obey the mechanism of electron accumulation in semiconductors when excited within the bandgap. Pure semiconductors face limitations in practical applications due to insufficient light absorption, charge carrier recombination, and low charge capacity. Diverse forms of photochromic hybrids (nanopowders, films, hydrogels, and multilayer structures) with rapid change, repeatability, and reversibility are possible via nanocustomization, surface/interface engineering, heterojunction fabrication, and complexing organic ligands. Manipulating the function of photochromic systems through light stimulation is becoming an attractive paradigm, divided into two branches: light-color complementarity and photoconductivity. This review examines the widely accepted photoresponsive principles and the still controversial energy transfer models. We emphasize the correlation between material properties and performance enhancement to inspire the rational structure design. The bottlenecks in current development are identified by analyzing application-specific innovation concepts, fabrication processes, and performance metrics. In addition, we present several perspectives to encourage meaningful multidisciplinary collaboration.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials