具有一阶自回归偏态误差的部分线性模型的贝叶斯诊断法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-11 DOI:10.1007/s00180-024-01504-2
Yonghui Liu, Jiawei Lu, Gilberto A. Paula, Shuangzhe Liu
{"title":"具有一阶自回归偏态误差的部分线性模型的贝叶斯诊断法","authors":"Yonghui Liu, Jiawei Lu, Gilberto A. Paula, Shuangzhe Liu","doi":"10.1007/s00180-024-01504-2","DOIUrl":null,"url":null,"abstract":"<p>This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (<span>\\(n=200{\\sim }400\\)</span>) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, <span>\\(\\phi \\)</span>-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors\",\"authors\":\"Yonghui Liu, Jiawei Lu, Gilberto A. Paula, Shuangzhe Liu\",\"doi\":\"10.1007/s00180-024-01504-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (<span>\\\\(n=200{\\\\sim }400\\\\)</span>) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, <span>\\\\(\\\\phi \\\\)</span>-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01504-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01504-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种贝叶斯局部影响方法,用于在具有一阶自回归偏态误差的部分线性模型中检测有影响的观测值。该方法适用于中小型数据集(n=200{/sim }400),并克服了一些理论限制,弥补了经典方法在中小型数据诊断方面的不足。采用 MCMC 算法进行参数估计,并使用三种扰动方案(先验、方差和数据)和三种测量尺度(贝叶斯因子、(\phi \)-发散和后验均值)进行贝叶斯局部影响分析。模拟研究验证了诊断的可靠性。最后,利用 1976 年洛杉矶臭氧浓度的数据进行了实际应用,进一步证明了诊断方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors

This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (\(n=200{\sim }400\)) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, \(\phi \)-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1