Nadiisah Nurul Inayah, Ahmad Kusumaatmaja, Rini Murtafi'atin
{"title":"聚乙烯醇(PVA)/尿素/二氧化钛纳米纤维膜的缓释肥料特性","authors":"Nadiisah Nurul Inayah, Ahmad Kusumaatmaja, Rini Murtafi'atin","doi":"10.1002/pat.6472","DOIUrl":null,"url":null,"abstract":"Nanofiber is a material used as a drug carrier matrix in drug release materials. Its morphology has high porosity and good flexibility, making it suitable for this purpose. The use of nanofiber as a carrier matrix in slow‐release fertilizer (SRF) material is expected to provide a solution for releasing fertilizer into the soil more measurably and efficiently In this study, PVA/Urea/TiO<jats:sub>2</jats:sub> nanofibers were fabricated using the electrospinning method. PVA/Urea/TiO<jats:sub>2</jats:sub> SRFs were prepared using varying urea mass percentages (10%, 15%, and 20% of PVA mass) and the concentration of titanium dioxide suspension solution (0, 0.2, and 0.4 mL). Every sample was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) and tested using contact angle and slow‐release tests. From SEM characterizations, all samples showed the ability to form nanofiber. It was found that the membrane diameter sizes for each sample A, B, C, D, E, and F were 341 ± 5, 309 ± 12, 109 ± 3, 313 ± 10, 109 ± 3, and 158 ± 6 nm, respectively. The FTIR characterizations showed that all the matrix samples successfully contained the nitrogen group, which was found at wave number 1605 cm<jats:sup>−1</jats:sup> (NH deformation), 1574 cm<jats:sup>−1</jats:sup> (CN stretching), and 3430 cm<jats:sup>−1</jats:sup> (NH stretching). The SEM mapping images confirmed the presence of titanium dioxide (green dots). The contact angle test showed that all samples had hydrophilic properties (the contact angle value lower than 90°), and the greatest value of contact angle measurement was 31.08° for sample C/E (sample with the most presence of TiO<jats:sub>2</jats:sub> suspension solution 0.4 mL). The sample with the greatest TiO<jats:sub>2</jats:sub> suspension concentration (0.4 mL) had the longest urea release time, lasting 8 days. This result indicates the addition of TiO<jats:sub>2</jats:sub>, can potentially suppress the hydrophilic properties of the PVA membrane. It is found that the addition of TiO<jats:sub>2</jats:sub> influenced the membrane's hydrophilicity, consequently increasing the release rate. This study used the Korsmeyer–Peppas mathematical kinetic model to show that diffusion and swelling are release mechanisms for SRF membranes.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"90 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slow‐release fertilizer behavior of polyvinyl alcohol (PVA)/urea/TiO2 nanofiber membrane\",\"authors\":\"Nadiisah Nurul Inayah, Ahmad Kusumaatmaja, Rini Murtafi'atin\",\"doi\":\"10.1002/pat.6472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofiber is a material used as a drug carrier matrix in drug release materials. Its morphology has high porosity and good flexibility, making it suitable for this purpose. The use of nanofiber as a carrier matrix in slow‐release fertilizer (SRF) material is expected to provide a solution for releasing fertilizer into the soil more measurably and efficiently In this study, PVA/Urea/TiO<jats:sub>2</jats:sub> nanofibers were fabricated using the electrospinning method. PVA/Urea/TiO<jats:sub>2</jats:sub> SRFs were prepared using varying urea mass percentages (10%, 15%, and 20% of PVA mass) and the concentration of titanium dioxide suspension solution (0, 0.2, and 0.4 mL). Every sample was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) and tested using contact angle and slow‐release tests. From SEM characterizations, all samples showed the ability to form nanofiber. It was found that the membrane diameter sizes for each sample A, B, C, D, E, and F were 341 ± 5, 309 ± 12, 109 ± 3, 313 ± 10, 109 ± 3, and 158 ± 6 nm, respectively. The FTIR characterizations showed that all the matrix samples successfully contained the nitrogen group, which was found at wave number 1605 cm<jats:sup>−1</jats:sup> (NH deformation), 1574 cm<jats:sup>−1</jats:sup> (CN stretching), and 3430 cm<jats:sup>−1</jats:sup> (NH stretching). The SEM mapping images confirmed the presence of titanium dioxide (green dots). The contact angle test showed that all samples had hydrophilic properties (the contact angle value lower than 90°), and the greatest value of contact angle measurement was 31.08° for sample C/E (sample with the most presence of TiO<jats:sub>2</jats:sub> suspension solution 0.4 mL). The sample with the greatest TiO<jats:sub>2</jats:sub> suspension concentration (0.4 mL) had the longest urea release time, lasting 8 days. This result indicates the addition of TiO<jats:sub>2</jats:sub>, can potentially suppress the hydrophilic properties of the PVA membrane. It is found that the addition of TiO<jats:sub>2</jats:sub> influenced the membrane's hydrophilicity, consequently increasing the release rate. This study used the Korsmeyer–Peppas mathematical kinetic model to show that diffusion and swelling are release mechanisms for SRF membranes.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6472\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6472","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Slow‐release fertilizer behavior of polyvinyl alcohol (PVA)/urea/TiO2 nanofiber membrane
Nanofiber is a material used as a drug carrier matrix in drug release materials. Its morphology has high porosity and good flexibility, making it suitable for this purpose. The use of nanofiber as a carrier matrix in slow‐release fertilizer (SRF) material is expected to provide a solution for releasing fertilizer into the soil more measurably and efficiently In this study, PVA/Urea/TiO2 nanofibers were fabricated using the electrospinning method. PVA/Urea/TiO2 SRFs were prepared using varying urea mass percentages (10%, 15%, and 20% of PVA mass) and the concentration of titanium dioxide suspension solution (0, 0.2, and 0.4 mL). Every sample was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) and tested using contact angle and slow‐release tests. From SEM characterizations, all samples showed the ability to form nanofiber. It was found that the membrane diameter sizes for each sample A, B, C, D, E, and F were 341 ± 5, 309 ± 12, 109 ± 3, 313 ± 10, 109 ± 3, and 158 ± 6 nm, respectively. The FTIR characterizations showed that all the matrix samples successfully contained the nitrogen group, which was found at wave number 1605 cm−1 (NH deformation), 1574 cm−1 (CN stretching), and 3430 cm−1 (NH stretching). The SEM mapping images confirmed the presence of titanium dioxide (green dots). The contact angle test showed that all samples had hydrophilic properties (the contact angle value lower than 90°), and the greatest value of contact angle measurement was 31.08° for sample C/E (sample with the most presence of TiO2 suspension solution 0.4 mL). The sample with the greatest TiO2 suspension concentration (0.4 mL) had the longest urea release time, lasting 8 days. This result indicates the addition of TiO2, can potentially suppress the hydrophilic properties of the PVA membrane. It is found that the addition of TiO2 influenced the membrane's hydrophilicity, consequently increasing the release rate. This study used the Korsmeyer–Peppas mathematical kinetic model to show that diffusion and swelling are release mechanisms for SRF membranes.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.