非负时间序列的飓风 GARCH 模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-11 DOI:10.1111/stan.12349
Šárka Hudecová, Michal Pešta
{"title":"非负时间序列的飓风 GARCH 模型","authors":"Šárka Hudecová, Michal Pešta","doi":"10.1111/stan.12349","DOIUrl":null,"url":null,"abstract":"The studied semi‐continuous time series contains a nonnegligible portion of observations equal to a single value (typically zero), whereas the remaining outcomes are strictly positive. A novel class of hurdle GARCH models having dependent zero occurrences is considered and the classical maximum likelihood estimation is employed. However, a distribution of the underlying time series innovations does not belong into the exponential family, which together with the dependence of innovations makes the whole inference nonstandard. Consistency and asymptotic normality of the estimator are derived. Efficiency of the estimation is elaborated and compared with the alternative quasi‐likelihood approach. A bootstrap prediction is also discussed. An analysis of sparse nonlife insurance claims is performed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hurdle GARCH models for nonnegative time series\",\"authors\":\"Šárka Hudecová, Michal Pešta\",\"doi\":\"10.1111/stan.12349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The studied semi‐continuous time series contains a nonnegligible portion of observations equal to a single value (typically zero), whereas the remaining outcomes are strictly positive. A novel class of hurdle GARCH models having dependent zero occurrences is considered and the classical maximum likelihood estimation is employed. However, a distribution of the underlying time series innovations does not belong into the exponential family, which together with the dependence of innovations makes the whole inference nonstandard. Consistency and asymptotic normality of the estimator are derived. Efficiency of the estimation is elaborated and compared with the alternative quasi‐likelihood approach. A bootstrap prediction is also discussed. An analysis of sparse nonlife insurance claims is performed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12349\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12349","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

所研究的半连续时间序列包含不可忽略的一部分观测值,这些观测值等于一个单一值(通常为零),而其余结果严格为正。研究考虑了一类具有依赖零发生率的新型阶跃 GARCH 模型,并采用了经典的最大似然估计方法。然而,基础时间序列创新值的分布不属于指数族,再加上创新值的依赖性,使得整个推断不标准。推导出了估计器的一致性和渐近正态性。对估计的效率进行了阐述,并与其他准概率方法进行了比较。此外,还讨论了引导预测。对稀疏的非寿险理赔进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hurdle GARCH models for nonnegative time series
The studied semi‐continuous time series contains a nonnegligible portion of observations equal to a single value (typically zero), whereas the remaining outcomes are strictly positive. A novel class of hurdle GARCH models having dependent zero occurrences is considered and the classical maximum likelihood estimation is employed. However, a distribution of the underlying time series innovations does not belong into the exponential family, which together with the dependence of innovations makes the whole inference nonstandard. Consistency and asymptotic normality of the estimator are derived. Efficiency of the estimation is elaborated and compared with the alternative quasi‐likelihood approach. A bootstrap prediction is also discussed. An analysis of sparse nonlife insurance claims is performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1