通过在磁铁矿纳米粒子上添加钴控制各向异性和磁热效应

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-03-05 Epub Date: 2024-07-15 DOI:10.1021/acsami.4c03343
Adriele Aparecida de Almeida, Fernando Fabris, Gustavo Soares da Silva, Kleber Roberto Pirota, Marcelo Knobel, Diego Muraca
{"title":"通过在磁铁矿纳米粒子上添加钴控制各向异性和磁热效应","authors":"Adriele Aparecida de Almeida, Fernando Fabris, Gustavo Soares da Silva, Kleber Roberto Pirota, Marcelo Knobel, Diego Muraca","doi":"10.1021/acsami.4c03343","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic hyperthermia (MH) has emerged as a promising technology with diverse applications in medical and technological fields, leveraging the remote induction of temperature elevation through an alternating magnetic field. While Fe<sub>3</sub>O<sub>4</sub> nanoparticles with an average size around 12-25 nm are commonly employed in MH systems, this study introduces a strategy to produce smaller particles (less than or equal to 10 nm) with enhanced heating efficiency, as measured by specific power absorption (SPA). We conducted an exhaustive and detailed investigation into the morphological and magnetic properties of Co<sub><i>x</i></sub>Fe<sub>3-<i>x</i></sub>O<sub>4</sub> nanoparticles, aiming to optimize their MH response. By varying the Co content, we successfully tuned the effective magnetic anisotropy while maintaining saturation magnetization nearly constant. The MH analysis indicates that these nanoparticles predominantly heat through the Néel mechanism, demonstrating robust reproducibility across different concentrations, viscosity mediums, and ac field conditions. Notably, we identified an optimal anisotropy or Co concentration that maximizes SPA, crucial for developing magnetic systems requiring particles with specific sizes. This work contributes to advancing the understanding and application of MH, particularly in tailoring nanoparticle properties for targeted and efficient heat generation in various contexts.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"13083-13093"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.\",\"authors\":\"Adriele Aparecida de Almeida, Fernando Fabris, Gustavo Soares da Silva, Kleber Roberto Pirota, Marcelo Knobel, Diego Muraca\",\"doi\":\"10.1021/acsami.4c03343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic hyperthermia (MH) has emerged as a promising technology with diverse applications in medical and technological fields, leveraging the remote induction of temperature elevation through an alternating magnetic field. While Fe<sub>3</sub>O<sub>4</sub> nanoparticles with an average size around 12-25 nm are commonly employed in MH systems, this study introduces a strategy to produce smaller particles (less than or equal to 10 nm) with enhanced heating efficiency, as measured by specific power absorption (SPA). We conducted an exhaustive and detailed investigation into the morphological and magnetic properties of Co<sub><i>x</i></sub>Fe<sub>3-<i>x</i></sub>O<sub>4</sub> nanoparticles, aiming to optimize their MH response. By varying the Co content, we successfully tuned the effective magnetic anisotropy while maintaining saturation magnetization nearly constant. The MH analysis indicates that these nanoparticles predominantly heat through the Néel mechanism, demonstrating robust reproducibility across different concentrations, viscosity mediums, and ac field conditions. Notably, we identified an optimal anisotropy or Co concentration that maximizes SPA, crucial for developing magnetic systems requiring particles with specific sizes. This work contributes to advancing the understanding and application of MH, particularly in tailoring nanoparticle properties for targeted and efficient heat generation in various contexts.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"13083-13093\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c03343\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c03343","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性热疗(MH)是一项前景广阔的技术,通过交变磁场远程诱导温度升高,可广泛应用于医疗和技术领域。磁热疗系统通常采用平均尺寸约为 12-25 纳米的 Fe3O4 纳米粒子,而本研究则介绍了一种通过比功率吸收(SPA)测量来提高加热效率的更小粒子(小于或等于 10 纳米)的生产策略。我们对 CoxFe3-xO4 纳米粒子的形态和磁性能进行了详尽细致的研究,旨在优化它们的 MH 响应。通过改变 Co 的含量,我们成功地调整了有效磁各向异性,同时保持饱和磁化几乎不变。磁共振分析表明,这些纳米粒子主要通过奈尔机制发热,在不同浓度、粘度介质和交流场条件下均表现出很强的可重复性。值得注意的是,我们确定了能使 SPA 最大化的最佳各向异性或 Co 浓度,这对于开发需要特定尺寸颗粒的磁性系统至关重要。这项工作有助于促进对 MH 的理解和应用,特别是在定制纳米粒子特性以在各种情况下进行有针对性的高效发热方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.

Magnetic hyperthermia (MH) has emerged as a promising technology with diverse applications in medical and technological fields, leveraging the remote induction of temperature elevation through an alternating magnetic field. While Fe3O4 nanoparticles with an average size around 12-25 nm are commonly employed in MH systems, this study introduces a strategy to produce smaller particles (less than or equal to 10 nm) with enhanced heating efficiency, as measured by specific power absorption (SPA). We conducted an exhaustive and detailed investigation into the morphological and magnetic properties of CoxFe3-xO4 nanoparticles, aiming to optimize their MH response. By varying the Co content, we successfully tuned the effective magnetic anisotropy while maintaining saturation magnetization nearly constant. The MH analysis indicates that these nanoparticles predominantly heat through the Néel mechanism, demonstrating robust reproducibility across different concentrations, viscosity mediums, and ac field conditions. Notably, we identified an optimal anisotropy or Co concentration that maximizes SPA, crucial for developing magnetic systems requiring particles with specific sizes. This work contributes to advancing the understanding and application of MH, particularly in tailoring nanoparticle properties for targeted and efficient heat generation in various contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Bioabsorbable Stent-Covering with Sustained Anticoagulant Activity Fabricated via Alternate Layer-by-Layer Self-Assembly of Heparin and Silk Fibroin Parallelized Droplet Vitrification for Single-Run Vitrification of Hepatocytes from an Entire Rat Liver In Situ Electrochemical Activation Strategy toward Organic Cation Preintercalated Layered Vanadium-Based Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries Influence of Surface Chemistry and Nanomechanical Properties of Methacrylate-Based Copolymer Thin Films on Keratocyte Cell Adhesion Contact Resistance Optimization in MoS2 Field-Effect Transistors through Reverse Sputtering-Induced Structural Modifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1