一种基于载体的定量蛋白质组学方法应用于心包积液生物标记物的发现。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Molecular & Cellular Proteomics Pub Date : 2024-08-01 Epub Date: 2024-07-14 DOI:10.1016/j.mcpro.2024.100812
Amanda J Campbell, Samir Cakar, Nicolai B Palstrøm, Lars P Riber, Lars M Rasmussen, Hans C Beck
{"title":"一种基于载体的定量蛋白质组学方法应用于心包积液生物标记物的发现。","authors":"Amanda J Campbell, Samir Cakar, Nicolai B Palstrøm, Lars P Riber, Lars M Rasmussen, Hans C Beck","doi":"10.1016/j.mcpro.2024.100812","DOIUrl":null,"url":null,"abstract":"<p><p>Data-dependent liquid chromatography tandem mass spectrometry is challenged by the large concentration range of proteins in plasma and related fluids. We adapted the SCoPE method from single-cell proteomics to pericardial fluid, where a myocardial tissue carrier was used to aid protein quantification. The carrier proteome and patient samples were labeled with distinct isobaric labels, which allowed separate quantification. Undepleted pericardial fluid from patients with type 2 diabetes mellitus and/or heart failure undergoing heart surgery was analyzed with either a traditional liquid chromatography tandem mass spectrometry method or with the carrier proteome. In total, 1398 proteins were quantified with a carrier, compared to 265 without, and a higher proportion of these proteins were of myocardial origin. The number of differentially expressed proteins also increased nearly four-fold. For patients with both heart failure and type 2 diabetes mellitus, pathway analysis of upregulated proteins demonstrated the enrichment of immune activation, blood coagulation, and stress pathways. Overall, our work demonstrates the applicability of a carrier for enhanced protein quantification in challenging biological matrices such as pericardial fluid, with potential applications for biomarker discovery. Mass spectrometry data are available via ProteomeXchange with identifier PXD053450.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100812"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387241/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Carrier-Based Quantitative Proteomics Method Applied to Biomarker Discovery in Pericardial Fluid.\",\"authors\":\"Amanda J Campbell, Samir Cakar, Nicolai B Palstrøm, Lars P Riber, Lars M Rasmussen, Hans C Beck\",\"doi\":\"10.1016/j.mcpro.2024.100812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data-dependent liquid chromatography tandem mass spectrometry is challenged by the large concentration range of proteins in plasma and related fluids. We adapted the SCoPE method from single-cell proteomics to pericardial fluid, where a myocardial tissue carrier was used to aid protein quantification. The carrier proteome and patient samples were labeled with distinct isobaric labels, which allowed separate quantification. Undepleted pericardial fluid from patients with type 2 diabetes mellitus and/or heart failure undergoing heart surgery was analyzed with either a traditional liquid chromatography tandem mass spectrometry method or with the carrier proteome. In total, 1398 proteins were quantified with a carrier, compared to 265 without, and a higher proportion of these proteins were of myocardial origin. The number of differentially expressed proteins also increased nearly four-fold. For patients with both heart failure and type 2 diabetes mellitus, pathway analysis of upregulated proteins demonstrated the enrichment of immune activation, blood coagulation, and stress pathways. Overall, our work demonstrates the applicability of a carrier for enhanced protein quantification in challenging biological matrices such as pericardial fluid, with potential applications for biomarker discovery. Mass spectrometry data are available via ProteomeXchange with identifier PXD053450.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100812\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100812\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100812","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

依赖数据的液相色谱串联质谱法(LC-MS/MS)面临着血浆和相关液体中蛋白质浓度范围大的挑战。我们将单细胞蛋白质组学中的 SCoPE 方法应用于心包积液,使用心肌组织载体帮助蛋白质定量。载体蛋白质组和患者样本都用不同的等位标签标记,这样就可以分别进行定量。对接受心脏手术的 2 型糖尿病和/或心力衰竭患者的未耗竭心包积液采用传统的 LC-MS/MS 方法或载体蛋白质组进行分析。与不使用载体的265种蛋白质相比,使用载体的蛋白质组共量化了1398种蛋白质,其中心肌来源的蛋白质比例更高。差异表达蛋白质的数量也增加了近四倍。对于心力衰竭和 2 型糖尿病患者,上调蛋白的通路分析表明免疫激活、血液凝固和应激通路的富集。总之,我们的工作证明了在心包积液等具有挑战性的生物基质中增强蛋白质定量的载体的适用性,并有望应用于生物标记物的发现。质谱数据可通过 ProteomeXchange 获取,标识符为 PXD053450。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Carrier-Based Quantitative Proteomics Method Applied to Biomarker Discovery in Pericardial Fluid.

Data-dependent liquid chromatography tandem mass spectrometry is challenged by the large concentration range of proteins in plasma and related fluids. We adapted the SCoPE method from single-cell proteomics to pericardial fluid, where a myocardial tissue carrier was used to aid protein quantification. The carrier proteome and patient samples were labeled with distinct isobaric labels, which allowed separate quantification. Undepleted pericardial fluid from patients with type 2 diabetes mellitus and/or heart failure undergoing heart surgery was analyzed with either a traditional liquid chromatography tandem mass spectrometry method or with the carrier proteome. In total, 1398 proteins were quantified with a carrier, compared to 265 without, and a higher proportion of these proteins were of myocardial origin. The number of differentially expressed proteins also increased nearly four-fold. For patients with both heart failure and type 2 diabetes mellitus, pathway analysis of upregulated proteins demonstrated the enrichment of immune activation, blood coagulation, and stress pathways. Overall, our work demonstrates the applicability of a carrier for enhanced protein quantification in challenging biological matrices such as pericardial fluid, with potential applications for biomarker discovery. Mass spectrometry data are available via ProteomeXchange with identifier PXD053450.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
期刊最新文献
Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-treated Pancreatic Beta Cells. Gradient-Elution Nanoflow Liquid Chromatography without a Binary Pump: Smoothed Step Gradients Enable Reproducible, Sensitive, and Low-Cost Separations for Single-Cell Proteomics. In-depth analysis of miRNA binding sites reveals the complex response of uterine epithelium to miR-26a-5p and miR-125b-5p during early pregnancy. Bridging the Gap from Proteomics Technology to Clinical Application: Highlights from the 68th Benzon Foundation Symposium. Knockdown proteomics reveals USP7 as a regulator of cell-cell adhesion in colorectal cancer via AJUBA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1