{"title":"泛素特异性蛋白酶1通过稳定细胞周期蛋白依赖性激酶5调节线粒体分裂和代谢重编程,从而促进肝细胞癌的发展。","authors":"Saiyan Bian, Wenkai Ni, Linlin Zhou, Yun Tong, Chengchen Dai, Xuying Zhao, Yuwei Qiang, Jie Gao, Yifu Xiao, Wei Liu, Changsheng Chen, Shengli Lin, Jianing Gong, Suming Zhao, Yinqi Chen, Zhaoyi Lin, Dong Liu, Hui Zhao, Wenjie Zheng","doi":"10.1038/s41418-024-01342-1","DOIUrl":null,"url":null,"abstract":"Although deubiquitinases (DUBs) have been well described in liver tumorigenesis, their potential roles and mechanisms have not been fully understood. In this study, we identified ubiquitin-specific protease 1 (USP1) as an oncogene with essential roles during hepatocellular carcinoma (HCC) progression. USP1, with elevated expression levels and clinical significance, was identified as a hub DUB for HCC in multiple bioinformatics datasets. Functionally, USP1 overexpression significantly enhanced the malignant behaviors in HCC cell lines and spheroids in vitro, as well as the zebrafish model and the xenograft model in vivo. In contrast, genetic ablation or pharmacological inhibition of USP1 dramatically impaired the phenotypes of HCC cells. Specifically, ectopic USP1 enhanced aggressive properties and metabolic reprogramming of HCC cells by modulating mitochondrial dynamics. Mechanistically, USP1 induced mitochondrial fission by enhancing phosphorylation of Drp1 at Ser616 via deubiquitination and stabilization of cyclin-dependent kinase 5 (CDK5), which could be degraded by the E3 ligase NEDD4L. The USP1/CDK5 modulatory axis was activated in HCC tissues, which was correlated with poor prognosis of HCC patients. Furthermore, Prasugrel was identified as a candidate USP1 inhibitor for targeting the phenotypes of HCC by an extensive computational study combined with experimental validations. Taken together, USP1 induced malignant phenotypes and metabolic reprogramming by modulating mitochondrial dynamics in a CDK5-mediated Drp1 phosphorylation manner, thereby deteriorating HCC progression.","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"31 9","pages":"1202-1218"},"PeriodicalIF":13.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin-specific protease 1 facilitates hepatocellular carcinoma progression by modulating mitochondrial fission and metabolic reprogramming via cyclin-dependent kinase 5 stabilization\",\"authors\":\"Saiyan Bian, Wenkai Ni, Linlin Zhou, Yun Tong, Chengchen Dai, Xuying Zhao, Yuwei Qiang, Jie Gao, Yifu Xiao, Wei Liu, Changsheng Chen, Shengli Lin, Jianing Gong, Suming Zhao, Yinqi Chen, Zhaoyi Lin, Dong Liu, Hui Zhao, Wenjie Zheng\",\"doi\":\"10.1038/s41418-024-01342-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although deubiquitinases (DUBs) have been well described in liver tumorigenesis, their potential roles and mechanisms have not been fully understood. In this study, we identified ubiquitin-specific protease 1 (USP1) as an oncogene with essential roles during hepatocellular carcinoma (HCC) progression. USP1, with elevated expression levels and clinical significance, was identified as a hub DUB for HCC in multiple bioinformatics datasets. Functionally, USP1 overexpression significantly enhanced the malignant behaviors in HCC cell lines and spheroids in vitro, as well as the zebrafish model and the xenograft model in vivo. In contrast, genetic ablation or pharmacological inhibition of USP1 dramatically impaired the phenotypes of HCC cells. Specifically, ectopic USP1 enhanced aggressive properties and metabolic reprogramming of HCC cells by modulating mitochondrial dynamics. Mechanistically, USP1 induced mitochondrial fission by enhancing phosphorylation of Drp1 at Ser616 via deubiquitination and stabilization of cyclin-dependent kinase 5 (CDK5), which could be degraded by the E3 ligase NEDD4L. The USP1/CDK5 modulatory axis was activated in HCC tissues, which was correlated with poor prognosis of HCC patients. Furthermore, Prasugrel was identified as a candidate USP1 inhibitor for targeting the phenotypes of HCC by an extensive computational study combined with experimental validations. Taken together, USP1 induced malignant phenotypes and metabolic reprogramming by modulating mitochondrial dynamics in a CDK5-mediated Drp1 phosphorylation manner, thereby deteriorating HCC progression.\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\"31 9\",\"pages\":\"1202-1218\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41418-024-01342-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41418-024-01342-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ubiquitin-specific protease 1 facilitates hepatocellular carcinoma progression by modulating mitochondrial fission and metabolic reprogramming via cyclin-dependent kinase 5 stabilization
Although deubiquitinases (DUBs) have been well described in liver tumorigenesis, their potential roles and mechanisms have not been fully understood. In this study, we identified ubiquitin-specific protease 1 (USP1) as an oncogene with essential roles during hepatocellular carcinoma (HCC) progression. USP1, with elevated expression levels and clinical significance, was identified as a hub DUB for HCC in multiple bioinformatics datasets. Functionally, USP1 overexpression significantly enhanced the malignant behaviors in HCC cell lines and spheroids in vitro, as well as the zebrafish model and the xenograft model in vivo. In contrast, genetic ablation or pharmacological inhibition of USP1 dramatically impaired the phenotypes of HCC cells. Specifically, ectopic USP1 enhanced aggressive properties and metabolic reprogramming of HCC cells by modulating mitochondrial dynamics. Mechanistically, USP1 induced mitochondrial fission by enhancing phosphorylation of Drp1 at Ser616 via deubiquitination and stabilization of cyclin-dependent kinase 5 (CDK5), which could be degraded by the E3 ligase NEDD4L. The USP1/CDK5 modulatory axis was activated in HCC tissues, which was correlated with poor prognosis of HCC patients. Furthermore, Prasugrel was identified as a candidate USP1 inhibitor for targeting the phenotypes of HCC by an extensive computational study combined with experimental validations. Taken together, USP1 induced malignant phenotypes and metabolic reprogramming by modulating mitochondrial dynamics in a CDK5-mediated Drp1 phosphorylation manner, thereby deteriorating HCC progression.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.