Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann
{"title":"用于分组分析的贝叶斯层次模型。","authors":"Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann","doi":"10.1002/pst.2424","DOIUrl":null,"url":null,"abstract":"<p><p>In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Hierarchical Models for Subgroup Analysis.\",\"authors\":\"Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann\",\"doi\":\"10.1002/pst.2424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2424\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2424","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bayesian Hierarchical Models for Subgroup Analysis.
In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.